1 Searches for Particle Dark Matter - status Jan Conrad Oskar Klein Centre Physics Department Stockholm University Gamma 2012 July 9-13,

Slides:



Advertisements
Similar presentations
Dwarf spheroidal galaxies as targets for indirect dark matter searches Ewa L. Łokas (Copernicus Center, Warsaw)
Advertisements

INDIRECT DARK MATTER SEARCHES WITH HESS J-F Glicenstein IRFU/CEA-Saclay on behalf of the HESS collaboration.
PRESENT AND FUTURE DARK MATTER SEARCHES WITH IMAGING ATMOSPHERIC CHERENKOV TELESCOPES J-F. Glicenstein IRFU, CEA-Saclay.
Where will supersymmetric dark matter first be seen? Liang Gao National observatories of China, CAS.
Combined Energy Spectra of Flux and Anisotropy Identifying Anisotropic Source Populations of Gamma-rays or Neutrinos Sheldon Campbell The Ohio State University.
Dark Matter Annihilation in the Milky Way Halo Shunsaku Horiuchi (Tokyo) Hasan Yuksel (Ohio State) John Beacom (Ohio State) Shin’ichiro Ando (Caltech)
L.S.Stark 1, M.Doro 2, H.Bartko 3, A.Biland 1, M.Gaug 2, S.Lombardi 2, M.Mariotti 2, F.Prada 4, M.Sanchez-Conde 4, F.Zandanel 2 (for the MAGIC Collaboration*)
Carlos Muñoz Fermi-LAT prospects for the detection of µνSSM gravitino dark matter DSU 2011, Beijing, September
Dark Matter Explanation For e^\pm Excesses In Cosmic Ray Xiao-Gang He CHEP, PKU and Physics, NTU.
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
1 Search for Dark Matter Galactic Satellites with Fermi-LAT Ping Wang KIPAC-SLAC, Stanford University Representing the Fermi LAT Collaboration.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Brian L. Winer, Ohio State University Fermi Gamma-Ray Space Telescope CCAPP DM Workshop Page 1 Novel Searches for Dark Matter with Neutrino Telescopes.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine Arlington LC Workshop January 2003.
The LC and the Cosmos: Connections in Supersymmetry Jonathan Feng UC Irvine American Linear Collider Physics Group Seminar 20 February 2003.
Enhancement of Line Gamma Ray Signature from Bino-like Dark Matter Annihilation due to CP Violation Yoshio Sato (Saitama University/Technical University.
CMB constraints on WIMP annihilation: energy absorption during recombination Tracy Slatyer – Harvard University TeV Particle Astrophysics SLAC, 14 July.
Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics in Santa Cruz] TeV Particle Astrophysics 2009.
1 TEV PA Meeting July 2009 Preliminary Fermi-LAT Limits on High Energy Gamma Lines from WIMP Annihilation Yvonne Edmonds representing the Fermi-LAT Collaboration.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
Indirect Signals of Particle Dark Matter
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Gamma-Ray Results from Fermi Indirect Detection of Dark Matter Robert P. Johnson U.C. Santa Cruz Department of Physics and Santa Cruz Institute for Particle.
24 Sep 2013 DaMaSC 2 Feng 1 DARK MATTER AND ITS PARTICLE PROPERTIES Jonathan Feng, UC Irvine Dark Matter in Southern California (DaMaSC 2) Keck Institute.
Aldo Morselli INFN, Sezione di Roma 2 & Università di Roma Tor Vergata 1 Report from Italy A. Morselli, A. Lionetto, A. Cesarini, F.Fucito, P.Ullio* INFN,
Singlet Dark Matter, Type II Seesaw and Cosmic Ray Signals Nobuchika Okada Miami Fort Fauderdale, Dec , 2009 University of Alabama, Tuscaloosa.
Overview of indirect dark matter detection Jae Ho HEO Theoretical High Energy group Yonsei University 2012 Jindo Workshop, Sep
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
Gamma-rays from Dark Matter Annihilation in Milky Way Satellites Louie Strigari UC Irvine, Center for Cosmology Getting Prepared for GLAST UCLA,
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
Dan Hooper Theoretical Astrophysics Group Fermi National Laboratory Theoretical Particle-Astrophysics At Fermilab Annual DOE Review May.
15 Apr 15 Feng 1 COMPLEMENTARITY OF INDIRECT DARK MATTER DETECTION AMS Days at CERN Jonathan Feng, UC Irvine 15 April 2015.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
MARCH 11YPM 2015  ray from Galactic Center Tanmoy Mondal SRF PRL Dark Matter ?
Anisotropies in the gamma-ray sky Fiorenza Donato Torino University & INFN, Italy Workshop on High-Energy Messengers: connecting the non-thermal Extragalctic.
Indirect Detection Of Dark Matter
Indirect detection of Dark Matter with the ANTARES Neutrino Telescope Miguel Ardid on behalf of the ANTARES Collaboration Rome – September 2015.
Yu-Feng Zhou KITPC/ITP-CAS
Indirect Dark Matter Search with the MAGIC Telescope: first results for the Draco dSph observation S. Lombardi (1), A. Biland (2), M. Doro (1), M. Gaug.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
Type II Seesaw Portal and PAMELA/Fermi LAT Signals Toshifumi Yamada Sokendai, KEK In collaboration with Ilia Gogoladze, Qaisar Shafi (Univ. of Delaware)
V. Bertin - CPPM - PONT Avignon - April'14 Indirect search for Dark Matter with the ANTARES Neutrino Telescope Vincent Bertin - CPPM-Marseille on behalf.
Dark matter search at HERD X.-J. Bi Institute of High Energy Physics 3 nd Workshop of Herd. Xi’an,
Keegan Stoner Columbia High School. dark matter Obeying Inverse Square Law Outer stars orbit too fast what we should seewhat we actually see.
Results From VERITAS K. Byrum High Energy Physics (HEP) Division Argonne National Laboratory Indirect and Direct Detection of Dark Matter 6-12 Feb 2011,
The end of the electromagnetic spectrum
“VERITAS Science Highlights” VERITAS: TeV Astroparticle Physics Array of four 12-m Cherenkov telescopes Unprecedented sensitivity: ~100 GeV to ~30 TeV.
The 2nd workshop of air shower detection at high LHAASO detection of dark matter and astrophysical gamma ray sources Xiao-Jun Bi IHEP, CAS.
19 May 14 Feng 1 WIMPS: AN OVERVIEW, CURRENT CONSTRAINTS, AND WIMP-LIKE EXTENSIONS Debates on the Nature of Dark Matter The 8 th Harvard-Smithsonian Conference.
Xenon100 collaboration gives a stringent constraint on spin-independent elastic WIMP-nucleon scattering cross section. Ton-scale detectors for direct detection.
Studies of Systematics for Dark Matter Observations John Carr 1.
Roma International Conference on Astroparticle Physics Rome, May 2013 Juan de Dios Zornoza (IFIC – Valencia) in collaboration with G. Lambard (IFIC) on.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
Topics on Dark Matter Annihilation
An interesting candidate?
Dark Matter in Galactic Gamma Rays
Fermi LAT Limits on High-Energy Gamma Lines from WIMP Annihilation
Dark Matter Subhalos in the Fermi First Source Catalog
Can dark matter annihilation account for the cosmic e+- excesses?
Cooperate with X-L. Chen , Q. Yuan, X-J. Bi, Z-Q. Shen
DARK MATTER AND INDIRECT DETECTION IN COSMIC RAYS
Indirect detection of dark matter
Dark Matter Limits From The Galactic Halo With H.E.S.S.
Gamma-ray emission from warm WIMP annihilation
Presentation transcript:

1 Searches for Particle Dark Matter - status Jan Conrad Oskar Klein Centre Physics Department Stockholm University Gamma 2012 July 9-13, 2012 Heidelberg

2 Who has never heard of this? 25 % 70%

3 Weakly Interacting Massive Particles (WIMPs) The weak interaction mass scale and ordinary gauge couplings give right relic DM density without fine-tuning. Mass scale O(GeV)-O(TeV), makes them Cold Dark Matter Will not talk about axions 1, WISPs (sub-eV), sterile neutrinos (keV) Jungman+, Phys. Rept. (1996)

4 Detection of Dark Matter Indirect detection rate = (particle physics part) × (astrophysical part) X-sectionYield WIMP mass DM density

5 Universal signatures Y(E)   Z, Ullio et al. Phys.Rev.D66:123502,2002 Bringmann et al. JHEP 0801:049,2008. Birkedal et al.,   ...       

6 APP- halo density profile R. Catena Cosmological N-body simulations: Navarro- Frenk-White Einasto  ”Cuspy” Stellar dynamics: e.g. Burkert.  ”Cored” Strongest signal from the Galactic Center ! We are here

7 APP- ´substructure

8 Targets and publications (incomplete) Fermi-LAT: TeVPA 2009, arXiv: Fermi: Goodenough & Hooper, arXiv: Fermi: Dobler et al., arXiv: Fermi-LAT: Phys. Rev. Lett. 107, (2011) H.E.S.S.: Astropart.Phys. 34 (2011) MAGIC: Astrophys.J. 697 (2009) VERITAS: Astrophys.J. 720 (2010) VERITAS: Phys.Rev.D85:062001,2012 Fermi-LAT: Phys.Rev.Lett.104:091302,2010 Fermi: Vertongen et al. JCAP 1105 (2011) 027 Fermi: Weniger et al. arXiv: Fermi: Bringmann et al. arXiv: Fermi-LAT: , Phys.Rev.D. HESS: see v. Eldik talk later today Fermi-LAT: JCAP 1004:014,2010 Fermi: Akorvazian et. al.arXiv: Fermi : Huetsi et. al. arXiv: H.E.S.S. Phys.Rev.Lett. 106 (2011) Fermi: Cirelli et. al. arXIv: Fermi-LAT: arXiv: Galactic Centre Dwarf galaxies and Galaxy Clusters Galactic Halo Extra Galactic Lines

9 Targets - comments Galactic Centre Dwarf galaxies and Galaxy Clusters Galactic Halo Extra Galactic Lines Strongest signal expected, most difficult background Hard sources, not well understood diffuse emission Dwarfs: weak signal, but relatively well controlled Dark Matter Distribution and essentially no background (if at high latitude). Clusters: DM density not well constrained, but provides boost factor (extended emission), so good for discovery (if lucky) Fermi-LAT: spatial and spectral discrimination, good statititstics, extreme freedom in galactic diffuse emission. IACT: best potential, small systematics due to diffuse emission, ~100 hour observation time (GC halo) Very model dependent, good as target for spatial analysis. Smoking gun*, got to get lucky.

10 Dwarfs galaxies – cleanest target DM dominated (M/L ~ ). Nearby (~ 100 kpc) Low background but relatively small signal Stellar velocities can be used to measure DM density (error can be propagated to particle constraints) e.g: Charbonnier+, MNRAS 418 (2011) 1526 Strigari+,Phys. Rev. D, 75, Evans+, Phys. Rev., D69, , (2004)

11 Dwarf galaxies probed in gamma-rays H.E.S.S.MAGICFermi Veritas

12 Analysis details Exposure (hours) Background modeling DM distribution Fermi 11 month, 24 month (~ 1500 h) Diffuse/ Point sources Empirical NFW H.E.S.S.~15On-off Empirical NFW Theo. NFW VERITAS ~15 ~50 (Segue) On-off Empirical NFW Empirical Einasto MAGIC~15On-offEmpir. NFW Empir. core/cusp Kazantzidis

13 The Fermi-LAT dwarf analysis (maximum likelihood) Two new methodological approaches: Combining single source likelihoods  less sensitive to individual source fluctuations, improved constraints, but analysis can be optimized individually 1) Including uncertainties in DM density Applied to a the combination  over-all result is much less affected by the DM density uncertainties (impact reduced by factor 10).

14 Dwarf constraints -status χχ  qq

15 Large signal (shape and spectrum)  Large background  Very complicated background for the Fermi-LAT Galactic diffuse emission: Best shot for Air Cherenkov telescopes However see: Fermi-LAT: arXiv:

16 H.E.S.S. Galactic Center Halo Galactic center is observed anyway 112 hours of GC observations Little diffuse background, sensitive to gradients “only” 16 Signal BG 5 deg Abramowski et al, PRL 106 (2011) LAT Draco 11 month

17 Gamma-ray constraints, present status χχ  qq

18 Future: Cherenkov Telescope Array Right now: optimization of array configuration DM targets studied in upcoming paper: – Galactic Centre Halo – Dwarf Galaxies – Clusters of Galaxies – Spatial signal/Axions … under review by Astroparticle Physics, to appear very soon …

19 Gamma-ray constraints – with CTA Doro+ (CTA Consort), Astroparticle Physics. On CTA: see W. Hofmann tomorrow.

20 CTA DMA FERMI Gamma-ray flux Direct detection cross section (pb) Present- day limit Some LHC detectable Complementarity (Direct/Indirect) Gamma-rays Direct detection, neutrinos (Sun) Bringmann+, Phys.Rev. D83 (2011) Next generation limit pMSSM

21 Complementarity with LHC Bertone+,Phys.Rev. D85 (2012) LHC solution: DM LHC solution: NOT DM Gaugino masses Excluded with Fermi- LAT dwarf limit Empty contours: LHC only Filled: Including Fermi dSph Result pMSSM (benchmark from coannihilation region)

22 ”Detections” From Bergström, Ann.Phys. (Berlin) 524, (2012) ~ GeV WIMPs ~ TeV WIMPs ~ MeV WIMPs

23 A line in Fermi-LAT data? 3.3σ trial corrected (~50 events) 5σ trial corrected Su&Finkbeiner, arXiv: Bringmann+, arXiv: Weniger arXiv: Weniger x- sec Fermi-LAT (2 year), arXiv: also:Boyarski+, arXiv: Tempel+, arXiv: (4.5σ)

24 Questions to be answered before booking the trip to Stockholm Is it instrumental, a fluke or physics? – What is the (sufficiently strong) line signal in the Fermi-LAT Earth Limb emission (ZENITH>60, 0 < THETA< 60), at the same energy? – Can a GC hard source in connection with point spread function modelling cause this effect? If it is physics, is it dark matter? – Why do Su+Finkbeiner find an offset? – Can it be a non-line spectral feature? – Can other physical processes except DM produce the feature? Aharonian+, arXiv: Profumo+, arXiv: Future interesting high resolution instruments: GAMMA-400 (2018), DAMPE (China) (2015), large area instrument HESS II, (see Weniger’s talk later today).

25 Final remarks and summary Most robust gamma-ray searches ….. – Dwarf spheroidal galaxies: Fermi-LAT – Galactic Center halo (H.E.S.S.). Gamma-ray searches have constrained the benchmark cross- section of ~ cm -3 s, for WIMPs < 30 GeV, with a robust and clean method. … at the same time yielding ”indications” worth to explore experimentally (not quite theoretically yet) …. Orthogonality to direct/neutrinos and LHC in the most commonly studied theoretical scenarios (Supersymmetry). – acc: LHC results, direct: Xenon 1t, IceCube results..

26 Future In 2019: CTA/Fermi-LAT constrain thermal WIMP x-sec from 10 GeV – 10 TeV.  Endgame for the WIMP? … unless of course we get lucky … – nature picks a model with large line cross-section  Galactic Centre New players: Gamma-400 (2018), DAMPE (2015), HESSII ? – nature introduces large enough substructure boost in clusters of galaxies  Galactic clusters

27 Backup

28 Summary of line emission constraints EGRET: Pullen at al, Phys.Rev.D76:063006,2007 H.E.S.S: Ripken, PhD thesis, Hamburg U. EGRET GC (binned) Fermi HESS GC (binned) 100 h U X 1 lines IDM lines Mambrini, JCAP 0912:005,2009 Gustafsson et al, PRL,99:041301,2007 MSSM Weniger line

29 ATLAS mono-jet results

30 Apropos LHC … what about the Higgs? no general statements possible.... well, what is it? (spin 0, couplings to other particles ~ mass), consistent with SM Higgs or not? – Large gamma-gamma decay rate might indicate a contribution from BSM particles Implication studied in certain contexts of SUSY: – mSUGRA: implies rather small direct detection x-sec  detectable by Xenon-1t If line indication correct: annihilation with Higgs  Dirac Dark Matter Buckley+, arXiv: Akula+, arXiv: