Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Electrical Sounding on Ganymede A. Przyklenk, A. Hördt IGEP TU Braunschweig Ganymede.

Slides:



Advertisements
Similar presentations
5 Current Field Measurement 5.1Alternating Current Field Measurement 5.2Direct Current Potential Drop 5.3Alternating Current Potential Drop.
Advertisements

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Mining Model Variability – Inside Model Redundancy Sandro Schulze, TU Braunschweig.
Mitglied der Helmholtz-Gemeinschaft Y. Zhao 1*, E. Zimmermann 1, J. A. Huisman 2, A. Treichel 2, B. Wolters 1, S. van Waasen 1, A. Kemna 3 1 Central Institute.
Hyperthermia Applicator for Small Superficial Tumour Treatment Paolo TOGNI 1,Jan VRBA 1, Luca VANNUCCI 2 1 Dept. of EM Field, Czech Technical University.
Waveguides Rectangular Waveguides TEM, TE and TM waves
A little E&M review Coulomb’s Law Gauss’s Law Ohm’s Law.
Surface Penetrating Radar Simulations for Jupiter’s Icy Moons Thorsten Markus, Laboratory for Hydrospheric Processes NASA/GSFC,
Imaging a Fault with Magnetotellurics By Peter Winther.
E.T. ( E UROPA T RAVELERS ). GREEN TEAM Mission Principle Investigator : Min Ki Kim Co – Investigator : Young Been Choi : Jae Wook Choi : Yong Hyeon Jang.
UNIVERSITI MALAYSIA PERLIS
Ganymede Lander Page 1 - Magnetometer Proposal -Moscow, Magnetic Field Measurement Onboard a Ganymede Lander Experiment Proposal Based on Experiences.
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen MPA TU BRAUNSCHWEIG Engineering Team Trebes™ Coupled Heat Transfer Processes during.
Modifiez le style des sous-titres du masque A PERMITTIVITY PROBE FOR THE GANYMEDE LANDER Le Gall 1, A., V. Ciarletti 1, M. Hamelin 1, R. Grard 2 1 Laboratoire.
OEIC LAB National Cheng Kung University 1 Ching-Ting Lee Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University.
1 Carnegie Mellon Microcantilever Gas Chemical Sensors with Multi-modal Capability Sarah S. Bedair 1 Advisor:
Electric Fields P.1 Concept: Forces between charges are action- reaction pairs (N3L)
Theoretical Study & Modelling of the Intensity Distribution of VLF Signals Tamal Basak [1], Sujay Pal [1], S K Chakrabarti [1,2] 1] S N Bose National Centre.
Module No. 18 Electrical Methods
IHP Im Technologiepark Frankfurt (Oder) Germany IHP Im Technologiepark Frankfurt (Oder) Germany ©
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Oliver Pajonk, Bojana Rosic, Alexander Litvinenko, Hermann G. Matthies ISUME 2011,
Methods of Exploration. Methods of Mineral Exploration The most common methods of mineral exploration are: Aerial methods – magnetic, gravity and electromagnetic.
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Sheetal Gangula, Institute of Food chemistry Quantitative analysis of complex oligomeric.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Earth Sciences Sector Towards Reducing the Space Weather Impacts on Vulnerable Infrastructure (ground technology) L. Trichtchenko, D.H. Boteler Geomagnetic.
Sounding the Ganymede’s crust with a GPR V. Ciarletti 1, A. Le Gall 1, M. Biancheri-Astrier 2, J-J. Berthelier 1, S.M. Clifford 3, D. Plettemeier 4, M.
A Methodology for Interconnect Dimension Determination By: Jeff Cobb Rajesh Garg Sunil P Khatri Department of Electrical and Computer Engineering, Texas.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
(Deep Level Transient Spectroscopy)
Main task  Development, calibration and operation of spaceborne magnetometers Main research topics 1.Building and test of space magnetometers  Integration.
Numerical modeling of the electromagnetic coupling effects for phase error correction in EIT borehole measurement Y Zhao1, E Zimmermann1, J A Huisman2,
Electromagnetic Methods (EM) Measurement of varying electromagnetic fields Induced by transmitter antennas, recorded by receiver antennas Alternative measurement.
Automated Data Acquisition for an Infrared Spectrometer Lauren Foster 1, Obadiah Kegege 2, and Alan Mantooth 2,3 1 Manhattan College, Bronx, NY, 2 Arkansas.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Differential Preamp Stephen Kaye New Preamp Design Motivation Move preamplifier from controller to the Vacuum Interface Board (VIB) Amplifies.
Remote Radio Sounding Science For JIMO J. L. Green, B. W. Reinisch, P. Song, S. F. Fung, R. F. Benson, W. W. L. Taylor, J. F. Cooper, L. Garcia, D. Gallagher,
Development of Airborne Potassium Magnetometer Dr. Ivan Hrvoic, Ph.D., P.Eng. President, GEM Advanced Magnetometers Exploration 2007 & KEGS.
SOES6002: Modelling in Environmental and Earth System Science CSEM Lecture 1 Martin Sinha School of Ocean & Earth Science University of Southampton.
Anomalous resistivity due to lower-hybrid drift waves. Results of Vlasov-code simulations and Cluster observations. Ilya Silin Department of Physics University.
Introduction to Electrochemical Impedance Spectroscopy (EIS)
Veronique Beckers Exercise Systems & Synthetic Biotechnology elementary flux mode analysis Veronique Beckers
GP33A-06 / Fall AGU Meeting, San Francisco, December 2004 Magnetic signals generated by the ocean circulation and their variability. Manoj,
Midterm results Average mark 73.7% (29.5 / 40) Median mark 30 / 40.
Electromagnetic Methods (EM) Basic principle: Transmitter current (Ip) generates primary field (P), which generates ground emf, leading to subsurface “eddy”
UNCOOLED IR DETECTOR TEMPERATURE CONTROL Performed by : Shimon Amir Yogev Ben-Simon Instructor : Arie Nakhmani 1 TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY.
Lander Experiment ROMAP
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
Microwave Cooking Modeling Heat and moisture transport Andriy Rychahivskyy.
Basic Components used in Electronics. Used in electronic circuits to charge up to a given potenti al.
Sensitivity Analysis and Building Laterally-Variable Ocean Conductivity Grid 1 N. R. Schnepf (UoC/CIRES) C. Manoj (UoC/CIRES) A. V. Kuvshinov (ETHZ)
IDPU F1 Test Review FGM Fluxgate Magnetometer Michael Ludlam University of California - Berkeley.
A WIRELESS PASSIVE SENSOR FOR TEMPERATURE COMPENSATED REMOTE PH MONITORING IEEE SENSORS JOURNAL VOLUME 13, NO.6, JUNE 2013 WEN-TSAI SUNG, YAO-CHI HSU Ching-Hong.
Possible LLRF Configuration in ILC Sigit Basuki Wibowo LLRF Workshop, Shanghai - Nov 5, 2015.
Design of a feedback control system for KTX Hong Li, on behalf of KTX team The 17th International RFP Workshop, October , 2015, Hefei 1.
Electrode Spread (Array type)
Geology 5660/6660 Applied Geophysics 04 Apr 2016
Wireless Power How it works
CH5715 Energy Conversion and Storage
Extraction of surface impedance from magnetotelluric data
DEMOTE Mission to Europa
Electromagnetic Methods (EM)
The Europa Initiative for ESA’s M5 mission JEM SCIENCE PLAN
SESAME: Surface Electric Sounding and Acoustic Monitoring Experiment
PRACTICAL METHOD FOR ANALYSIS OF GROUNDING SYSTEM OF HV/MV SUBSTATIONS LOCATED IN URBAN AND SUBURBAN AREAS.
Port-Hamiltonian Description of Electro-Thermal Field-Circuit models
Energetic Neutral Atom Imaging of
Garching-Greifswald Ringberg Theory Meeting
Electrical Resistivity Survey of Yosemite Valley, CA
Bethany, Jay, and Michael
Authors C. Rivetta– Fermilab. F. Arteche , F. Szoncso, - CERN
Krishan Khurana, Margaret Kivelson
Presentation transcript:

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Electrical Sounding on Ganymede A. Przyklenk, A. Hördt IGEP TU Braunschweig Ganymede Lander Colloquium and Workshop 06. March 2013 | Electrical Sounding on Ganymede [nasa.gov]

Motivation Open questions:  Composition of Ganymede‘s subsurface?  Which non-ice materials occur?  Is there a regolith layer? 06. March 2013 | Electrical Sounding on Ganymede | 2 [modified after Placky, 1988]

Motivation Open Questions:  Composition of Ganymede‘s subsurface?  Which non-ice materials occur?  Is there a regolith layer? Measurement of electrical parameters with ERIC (Electrical Resistivity Imaging via Capacitive Electrodes) 06. March 2013 | Electrical Sounding on Ganymede | 3 [Kuras, 2002]

Outline 1.Motivation 2.Quadrupole and its impedance 3.ERIC  Operating Modes  Measurements on Earth  Integration on a Lander 4.Conclusion 06. March 2013 | Electrical Sounding on Ganymede | 4

Quadrupole and its impedance 06. March 2013 | Electrical Sounding on Ganymede | 5 A V A V [after Kuras, 2002] c ccc

Quadrupole and its impedance 06. March 2013 | Electrical Sounding on Ganymede | 6 A V A V [after Kuras, 2002] c ccc

4-Point-Array over a half-space:  Sensitivity ranges Quadrupole and its impedance 06. March 2013 | Electrical Sounding on Ganymede | 7 displacement current → ε conduction current → ρ ρ crit

Operating Modes A cccc V 06. March 2013 | Electrical Sounding on Ganymede | 8 Main Mode:  Impedance Z  4 electrode array  Sounding depth: array size

Operating Modes Main Mode:  Impedance Z  4 electrode array  Sounding depth: array size Potential option 1:  Contact impedance Z C [Hördt et al., 2013]  2 electrode array  Sounding depth: electrode size A cc V A cccc V 06. March 2013 | Electrical Sounding on Ganymede | 9

Operating Modes 06. March 2013 | Electrical Sounding on Ganymede | 10 Potential option 2: combine E- and B-field measurments  Jupiter rotation: magnetic field variation on Ganymede  10hrs  Electromagnetic impedance Z EM  Penetration depth: 100km-scale  Derive information on conductive ocean  Expected electic field signal: 1Ωm (conductive ocean): 1µV Method is very attractive but 1MΩm (no ocean): 1mV not tested untill now!

Measurements on Earth Determining electrical parameters of ice  Sounding depth:  Z ~ 0.5m  Z C ~ 0.05m  ρ=1MΩm  ε r =120 [Sheshadri et al., 2008] Transmitter Receiver Potential electrodes Current electrodes 06. March 2013 | Electrical Sounding on Ganymede | 11

Integration on a lander V A Configuration as proposed for the Phobos Grunt Mission: Main Mode: Impedance measurement: sounding depth 2m 06. March 2013 | Electrical Sounding on Ganymede | 12

Integration on a lander V A Configuration as proposed for the Phobos Grunt Mission: Potential option 1: Contact impedance measurement: sounding depth 0.2m 06. March 2013 | Electrical Sounding on Ganymede | 13

Integration on a lander V A Configuration as proposed for the Phobos Grunt Mission: Potential option 2: Electromagnetic impedance measurement: sounding depth 100km-scale + magnetometer 06. March 2013 | Electrical Sounding on Ganymede | 14

06. March 2013 | Electrical Sounding on Ganymede | 15 Data processing in FPGA  Controlling of AD and DA conversion  Calculating of physical units  Pre-calibration  Packaging  Timing  HK processing data interface power interface ADC DAC ADC DAC excitation measuring dB/dt feedback active E-field measurement stimulation Integration on a lander Using existing structures:

06. March 2013 | Electrical Sounding on Ganymede | 16 Data processing in FPGA  Controlling of AD and DA conversion  Calculating of physical units  Pre-calibration  Packaging  Timing  HK processing data interface power interface ADC DAC ADC DAC excitation measuring dB/dt feedback active E-field measurement stimulation Integration on a lander Using existing structures: ComponentWeight Cables150 g Electrodes200 g Preamplifier150 g Sum500 g Power200 mW

Conclusion  Electrical parameters are adapted to determine Ganymedes surface/subsurface composition.  ERIC appoints transfer and contact impedance. Combined with the magnetometer also the electromagnetic impedance.  We are experienced in measuring on earth.  There is already a concept to integrate ERIC on the lander (proposal for the Phobos Grunt Mission). 06. March 2013 | Electrical Sounding on Ganymede | 17

Thank you for listening! I also want to thank the for funding. 06. March 2013 | Electrical Sounding on Ganymede | 18

2. Quadrupole and its transfer impedance 06. March 2013 | Electrical Sounding on Ganymede | 19 h A V A V [after Kuras, 2002] c ccc

Determine permittivity

Determine resistivity