Word classes and part of speech tagging Chapter 5.

Slides:



Advertisements
Similar presentations
Identifying Parts of Speech & their Functions Nouns, Pronouns, Verbs, Prepositions, Adjectives, & Adverbs; Subjects & Objects.
Advertisements

Word Classes and POS Tagging Read J & M Chapter 8. You may also want to look at: view.html.
 adj (adjectif)  adv (adverbe)  det (déterminant)  nom  prep (préposition)  pron (pronom)  verbe.
Outline Why part of speech tagging? Word classes
Word Classes and Part-of-Speech (POS) Tagging
1 Part of Speech tagging Lecture 9 Slides adapted from: Dan Jurafsky, Julia Hirschberg, Jim Martin.
Chapter 8. Word Classes and Part-of-Speech Tagging From: Chapter 8 of An Introduction to Natural Language Processing, Computational Linguistics, and Speech.
BİL711 Natural Language Processing
Part-of-speech tagging. Parts of Speech Perhaps starting with Aristotle in the West (384–322 BCE) the idea of having parts of speech lexical categories,
Part of Speech Tagging Importance Resolving ambiguities by assigning lower probabilities to words that don’t fit Applying to language grammatical rules.
February 2007CSA3050: Tagging II1 CSA2050: Natural Language Processing Tagging 2 Rule-Based Tagging Stochastic Tagging Hidden Markov Models (HMMs) N-Grams.
Natural Language Processing Lecture 8—9/24/2013 Jim Martin.
September PART-OF-SPEECH TAGGING Universita’ di Venezia 1 Ottobre 2003.
LING 388 Language and Computers Lecture 22 11/25/03 Sandiway FONG.
1 A Hidden Markov Model- Based POS Tagger for Arabic ICS 482 Presentation A Hidden Markov Model- Based POS Tagger for Arabic By Saleh Yousef Al-Hudail.
LING 438/538 Computational Linguistics Sandiway Fong Lecture 22: 11/9.
Part II. Statistical NLP Advanced Artificial Intelligence Part of Speech Tagging Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme Most.
1 CSC 594 Topics in AI – Applied Natural Language Processing Fall 2009/ Part-Of-Speech (POS) Tagging.
 Christel Kemke 2007/08 COMP 4060 Natural Language Processing Word Classes and English Grammar.
Part-of-Speech (POS) tagging See Eric Brill “Part-of-speech tagging”. Chapter 17 of R Dale, H Moisl & H Somers (eds) Handbook of Natural Language Processing,
POS based on Jurafsky and Martin Ch. 8 Miriam Butt October 2003.
LING 388: Language and Computers Sandiway Fong Lecture 23: 11/15.
NLP and Speech 2004 English Grammar
1 PART-OF-SPEECH TAGGING. 2 Topics of the next three lectures Tagsets Rule-based tagging Brill tagger Tagging with Markov models The Viterbi algorithm.
CMSC 723 / LING 645: Intro to Computational Linguistics November 3, 2004 Lecture 9 (Dorr): Word Classes, POS Tagging (Chapter 8) Intro to Syntax (Start.
Word classes and part of speech tagging Chapter 5.
February 2007CSA3050: Tagging I1 CSA2050: Natural Language Processing Tagging 1 Tagging POS and Tagsets Ambiguities NLTK.
8. Word Classes and Part-of-Speech Tagging 2007 년 5 월 26 일 인공지능 연구실 이경택 Text: Speech and Language Processing Page.287 ~ 303.
1 POS Tagging: Introduction Heng Ji Feb 2, 2008 Acknowledgement: some slides from Ralph Grishman, Nicolas Nicolov, J&M.
Lemmatization Tagging LELA /20 Lemmatization Basic form of annotation involving identification of underlying lemmas (lexemes) of the words in.
Part II. Statistical NLP Advanced Artificial Intelligence Applications of HMMs and PCFGs in NLP Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme.
Parts of Speech Sudeshna Sarkar 7 Aug 2008.
Some Advances in Transformation-Based Part of Speech Tagging
Lecture 6 POS Tagging Methods Topics Taggers Rule Based Taggers Probabilistic Taggers Transformation Based Taggers - Brill Supervised learning Readings:
GRAMMARS David Kauchak CS159 – Fall 2014 some slides adapted from Ray Mooney.
10/24/2015CPSC503 Winter CPSC 503 Computational Linguistics Lecture 6 Giuseppe Carenini.
10/30/2015CPSC503 Winter CPSC 503 Computational Linguistics Lecture 7 Giuseppe Carenini.
Word classes and part of speech tagging Chapter 5.
Linguistics The eleventh week. Chapter 4 Syntax  4.1 Introduction  4.2 Word Classes.
Speech and Language Processing Ch8. WORD CLASSES AND PART-OF- SPEECH TAGGING.
CSA2050: Introduction to Computational Linguistics Part of Speech (POS) Tagging I Introduction Tagsets Approaches.
Word classes and part of speech tagging 09/28/2004 Reading: Chap 8, Jurafsky & Martin Instructor: Rada Mihalcea Note: Some of the material in this slide.
NLP. Introduction to NLP Motivation –A lot of the work is repeated –Caching intermediate results improves the complexity Dynamic programming –Building.
Natural Language Processing
CPSC 422, Lecture 15Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 15 Oct, 14, 2015.
Part-of-speech tagging
Human Language Technology Part of Speech (POS) Tagging II Rule-based Tagging.
◦ Process of describing the structure of phrases and sentences Chapter 8 - Phrases and sentences: grammar1.
1 Computational Lexicology, Morphology and Syntax Course 6 Diana Trandab ă ț Academic year:
Word classes and part of speech tagging. Slide 1 Outline Why part of speech tagging? Word classes Tag sets and problem definition Automatic approaches.
Parts of Speech By: Miaya Nischelle Sample. NOUN A noun is a person place or thing.
3/20/2016CPSC503 Winter CPSC 503 Computational Linguistics Lecture 7 Giuseppe Carenini.
POS TAGGING AND HMM Tim Teks Mining Adapted from Heng Ji.
6/18/2016CPSC503 Winter CPSC 503 Computational Linguistics Lecture 6 Giuseppe Carenini.
Speech and Language Processing SLP Chapter 5. 10/31/1 2 Speech and Language Processing - Jurafsky and Martin 2 Today  Parts of speech (POS)  Tagsets.
Lecture 5 POS Tagging Methods
Lecture 9: Part of Speech
English Basics Mrs.Azzah.
CSCI 5832 Natural Language Processing
CS4705 Part of Speech tagging
CSC 594 Topics in AI – Natural Language Processing
Improving an Open Source Question Answering System
CPSC 503 Computational Linguistics
PART OF SPEECH TAGGING (POS)
CPSC 503 Computational Linguistics
CPSC 503 Computational Linguistics
Natural Language Processing
CPSC 503 Computational Linguistics
David Kauchak CS159 – Spring 2019
Natural Language Processing (NLP)
Presentation transcript:

Word classes and part of speech tagging Chapter 5

Slide 1 Outline Why part of speech tagging? Word classes Tag sets and problem definition Automatic approaches 1: rule-based tagging Automatic approaches 2: stochastic tagging On Part 2: finish stochastic tagging, and continue on to: evaluation

Slide 2 Definition “The process of assigning a part-of-speech or other lexical class marker to each word in a corpus” (Jurafsky and Martin) the girl kissed the boy on the cheek WORDS TAGS N V P DET

Slide 3 An Example the girl kiss the boy on the cheek LEMMATAG +DET +NOUN +VPAST +DET +NOUN +PREP +DET +NOUN the girl kissed the boy on the cheek WORD

Slide 4 Motivation Speech synthesis — pronunciation Speech recognition — class-based N-grams Information retrieval — stemming, selection high-content words Word-sense disambiguation Corpus analysis of language & lexicography

Slide 5 Word Classes Basic word classes: Noun, Verb, Adjective, Adverb, Preposition, … Open vs. Closed classes Open: Nouns, Verbs, Adjectives, Adverbs. Why “open”? Closed: determiners: a, an, the pronouns: she, he, I prepositions: on, under, over, near, by, …

Slide 6 Open Class Words Every known human language has nouns and verbs Nouns: people, places, things Classes of nouns proper vs. common count vs. mass Verbs: actions and processes Adjectives: properties, qualities Adverbs: hodgepodge! Unfortunately, John walked home extremely slowly yesterday Numerals: one, two, three, third, …

Slide 7 Closed Class Words Differ more from language to language than open class words Examples: prepositions: on, under, over, … particles: up, down, on, off, … determiners: a, an, the, … pronouns: she, who, I,.. conjunctions: and, but, or, … auxiliary verbs: can, may should, …

Slide 8 Word Classes: Tag Sets Vary in number of tags: a dozen to over 200 Size of tag sets depends on language, objectives and purpose –Some tagging approaches (e.g., constraint grammar based) make fewer distinctions e.g., conflating prepositions, conjunctions, particles –Simple morphology = more ambiguity = fewer tags

Slide 9 Word Classes: Tag set example PRP PRP$

Slide 10 Example of Penn Treebank Tagging of Brown Corpus Sentence The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS./. VB DT NN. Book that flight. VBZ DT NN VB NN ? Does that flight serve dinner ? See Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

Slide 11 The Problem Words often have more than one word class: this This is a nice day = PRP This day is nice = DT You can go this far = RB

Slide 12 Word Class Ambiguity (in the Brown Corpus) Unambiguous (1 tag): 35,340 Ambiguous (2-7 tags): 4,100 2 tags3,760 3 tags264 4 tags61 5 tags12 6 tags2 7 tags1 (Derose, 1988)

Slide 13 Part-of-Speech Tagging Rule-Based Tagger: ENGTWOL (ENGlish TWO Level analysis) Stochastic Tagger: HMM-based Transformation-Based Tagger (Brill) (we won’t cover this)

Slide 14 Rule-Based Tagging Basic Idea: –Assign all possible tags to words –Remove tags according to set of rules of type: if word+1 is an adj, adv, or quantifier and the following is a sentence boundary and word-1 is not a verb like “consider” then eliminate non-adv else eliminate adv. –Typically more than 1000 hand-written rules

Slide 15 Sample ENGTWOL Lexicon Demo:

Slide 16 Stage 1 of ENGTWOL Tagging First Stage: Run words through a morphological analyzer to get all parts of speech. Example: Pavlov had shown that salivation … PavlovPAVLOV N NOM SG PROPER hadHAVE V PAST VFIN SVO HAVE PCP2 SVO shownSHOW PCP2 SVOO SVO SV thatADV PRON DEM SG DET CENTRAL DEM SG CS salivationN NOM SG

Slide 17 Stage 2 of ENGTWOL Tagging Second Stage: Apply constraints. Constraints used in negative way. Example: Adverbial “that” rule Given input: “that” If (+1 A/ADV/QUANT) (+2 SENT-LIM) (NOT -1 SVOC/A) Then eliminate non-ADV tags Else eliminate ADV