Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.

Slides:



Advertisements
Similar presentations
6.1 Transistor Operation 6.2 The Junction FET
Advertisements

IEEE Device Research Conference, June , Notre Dame
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Metal Oxide Semiconductor Field Effect Transistors
Derek Wright Monday, March 7th, 2005
Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), Mark A. Wistey University of California,
Spring 2007EE130 Lecture 41, Slide 1 Lecture #41 QUIZ #6 (Friday, May 4) Material of HW#12 & HW#13 (Lectures 33 through 38) –MOS non-idealities, V T adjustment;
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
Optional Reading: Pierret 4; Hu 3
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Scaling of High Frequency III-V Transistors , fax Short Course, 2009 Conference on InP and Related Materials,
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
Nanometer InP Electron Devices for VLSI and THz Applications
IC Process Integration
III-V HBT and (MOS) HEMT scaling
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
III-V/Ge Channel Engineering for Future CMOS
Application of Silicon-Germanium in the Fabrication of Ultra-shallow Extension Junctions of Sub-100 nm PMOSFETs P. Ranade, H. Takeuchi, W.-H. Lee, V. Subramanian,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Lower Limits To Specific Contact Resistivity
High Transconductance Surface Channel In0. 53Ga0
Optional Reading: Pierret 4; Hu 3
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Beyond Si MOSFETs Part 1.
Presentation transcript:

Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V. Jain, J. Cagnon, S. Stemmer, A. C. Gossard University of California, Santa Barbara *Now at Notre Dame E. Kim, P. C. McIntyre Stanford University Y.-J. Lee Intel B. Yue, L. Wang, P. Asbeck, Y. Taur University of California, San Diego 2009 Topical Workshop on Heterostructure Microelectronics, August 25-28, Nagano, Japan, Mark. Rodwell, University of California, Santa Barbara

III-V transistors: the goal is scaling 2-3 THz InP HBTs: 32 nm / 64 nm scaling generations 2-3 THz HEMTs: nm, balanced / fully scaled devices 15 nm InGaAs MOSFETs for VLSI implication: we need new fabrication processes

FET parameterchange gate lengthdecrease 2:1 current density (mA/  m), g m (mS/  m) increase 2:1 channel 2DEG electron densityincrease 2:1 gate-channel capacitance densityincrease 2:1 dielectric equivalent thicknessdecrease 2:1 channel thicknessdecrease 2:1 channel density of statesincrease 2:1 source & drain contact resistivitiesdecrease 4:1 Changes required to double transistor bandwidth HBT parameterchange emitter & collector junction widthsdecrease 4:1 current density (mA/  m 2 ) increase 4:1 current density (mA/  m) constant collector depletion thicknessdecrease 2:1 base thicknessdecrease 1.4:1 emitter & base contact resistivitiesdecrease 4:1 constant voltage, constant velocity scaling nearly constant junction temperature → linewidths vary as (1 / bandwidth) 2 fringing capacitance does not scale → linewidths scale as (1 / bandwidth )

III-V Fabrication Processes Must Change... Greatly 32 nm base & emitter contacts...self-aligned 3 mA/  m → 200 mA/  m 2 contacts above ~ 5 nm N+ layer → refractory contacts ! 15 nm source / drain contacts...self-aligned < 10 nm source / drain spacers (sidewalls) 15 nm gate length 1/2  m 2 contact resistivities 70 mA/  m 2 → refractory contacts 32 nm emitter junctions 1  m 2 contact resistivities

FETs

Semiconductor Capacitances Must Also Scale

Highly Scaled FET Process Flows

Why III-V MOSFETs Silicon MOSFETs: Gate oxide may limit <16 nm scaling IBM 45nm NMOS Narayan et al, VLSI 2006 * Enoki et al, EDL 1990 Alternative: In 0.53 Ga 0.47 As channel MOSFETs low m* (0.041 m o ) → high injection velocity, v inj (~ 2-3×10 7 cm/s) * → increase drive current, decreased CV/I I d / W g ~ c ox (V g -V th )v inj

MOSFET scaling * : lateral and vertical Goal : double package density → lateral scaling L g, W g, L s/d * Rodwell, IPRM 2008 double the MOSFET speed keep constant gate control vertical scaling t ox, t qw, x j

Target device structure Target 22 nm gate length Control of short-channel effects  vertical scaling 1 nm EOT: thin gate dielectric, surface-channel device 5 nm quantum well thickness <5 nm deep source / drain regions ~3 mA/  m target drive current  low access resistance self-aligned, low resistivity source / drain contacts self-aligned N+ source / drain regions with high doping

22 nm InGaAs MOSFET: Source Resistance IBM High-k Metal gate transistor Image Source: EE Times LgLg L S/D Source access resistance degrades I d and g m IC Package density : L S/D ~ L g =22 nm →  c must be low Need low sheet resistance in thin ~5 nm N+ layer Design targets:  c ~1  m 2,  sheet ~ 400 

22nm ion implanted InGaAs MOSFET Shallow junctions ( ~ 5 nm), high (~5×10 19 cm -3 ) doping Doping abruptness ( ~ 1 nm/decade) Lateral Straggle ( ~ 5 nm) Deep junctions would lead to degraded short channel effects Key Technological Challenges

Why HEMTs are Hard to Improve III-V MOSFETs do not face these scaling challenges SourceDrain Gate K Shinohara 1 st challenge with HEMTs: reducing access resistance gate barrier lies under S/D contacts → resistance low electron density under gate recess→ limits current 2 nd challenge with HEMTs: low gate barrier high tunneling currents with thin barrier high emission currents with high electron density channel gate barrier

HEMTs Differ in Access Resistance, Electrostatics HEMTs: short gate lengths, wide spacing / recess, wide contacts wide recess→ improved DIBL, improved subthreshold slope, wide contacts→ OK access resistivity even with poor contacts VLSI MOSFETs : short gate lengths, narrow contacts, no spacing/recess Need good DIBL even with zero drain/gate offset. Need low S/D resistance even with 22 nm width contacts.

InGaAs MOSFET with N+ Source/Drain by MEE Regrowth 1 1 Singisetti, ISCS Wistey, EMC Baraskar, EMC 2009 Interface HAADF-STEM 1* 2 nm InGaAs regrowth Self-aligned source/drain defined by MBE regrowth 2 Self-aligned in-situ Mo contacts 3 Process flow & dimensions selected for 22 nm L g design; present 200 nm gate length * TEM by J. Cagnon, Susanne Stemmer Group, UCSB

Regrown S/D process: key features Vertical S/D doping profile set by MBE no n+ junction extension below channel abrupt on few-nm scale Self-aligned & low resistivity...source / drain N+ regions...source / drain metal contacts Gate-first gate dielectric formed after MBE growth uncontaminated / undamaged surface

Process flow* * Singisetti et al, 2008 ISCS, September, Frieburg Singisetti et al ; Physica Status Solidi C, vol. 6, pp. 1394,2009

SiO2 W Cr FIB Cross-section Damage free channel Process scalable to sub-100 nm gate lengths Key challenge in S/D process: gate stack etch Requirement: avoid damaging semiconductor surface: Approach: Gate stack with multiple selective etches * * Singisetti et al ; Physica Status Solidi C, vol. 6, pp. 1394,2009

Key challenge in S/D process: dielectric sidewall 2-DSimulation of an artificially on state device in Atlas, Silvaco. Source doping 6e19 cm -3 t sw n (cm -3 ) R s (  m) 10 nm > 1× nm> 5× nm~ 4× n s under sidewall: electrostatic spillover from source, gate Sidewall must be kept thin: avoid carrier depletion, avoid source starvation spillover

Raised vs. Recessed S/D Regrowth: planar regrowth regrowth under sidewalls more difficult growth......tolerate of high D it in access region need thin sidewalls (now ~25nm) High D it ? → severe carrier depletion SRC Neoclassical CMOS Research Center

MBE Regrowth→ Gap Near Gate→ Source Resistance W / Cr / SiO 2 gate SEM Shadowing by gate: No regrowth next to gate Gap region is depleted of electrons High source resistance because of electron depletion in the gap MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti W/Cr gate Mo+InGaAs Ti/Au Pad Gap in regrowth SiO 2 cap

Migration Enhanced Epitaxial (MEE) S/D Regrowth* *Wistey, EMC 2008 Wistey, ICMBE 2008 High T migration enhanced Epitaxial (MEE) regrowth* regrowth interface gate No Gap 45 o tilt SEM Top of SiO 2 gate No Gap Side of gate High temperature migration enhanced epitaxial regrowth MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti

Regrown S/D III-V MOSFET: Images Cross-section after regrowth, but before Mo deposition Top view of completed device

Source Resistance: electron depletion near gate Electron depletion in regrowth shadow region (R 1 ) Electron depletion in the channel under SiN x sidewalls (R 2 ) R1 R2

SiO 2 W Cr InGaAs InAlAs Regrowth profile dependence on As flux* Uniform filling with lower As flux multiple InGaAs regrowths with InAlAs marker layers increasing As flux regrowth surface * Wistey et al, EMC 2009 Wistey et al NAMBE 2009 MBE growth by Dr. Mark Wistey, device fabrication and characterization by U. Singisetti uniform filling

InAs source/drain regrowth 1 Wistey et al, EMC 2009 Wistey et al NAMBE Bhargava et al, APL 1997 InAs regrowth Gate side of gate top of gate Mo S/D metal with N+ InAs underneath Improved InAs regrowth with low As flux for uniform filling 1 InAs less susceptible to electron depletion: Fermi pinning above E c 2

Self-Aligned Source/Drain regrowth

Self-Aligned Contacts: Height Selective Etching* Mo InGaAs PR * Burek et al, J. Cryst. Growth 2009 Dummy gate No regrowth

Fully Self-Aligned III-V MOSFET Process

Why Is the Device Drive Current Low ? → D it Devices used Stanford / McIntyre ALD Al 2 O 3 gate dielectric best Stanford results: H passivation for low D it. FET results: H gets driven away in process need, but do not yet have, post-process H anneal → high Dit on present FETs, c.a / cm 2 /eV. High D it → Carrier depletion under sidewalls greatly increased access resistance. High D it → inefficient charge modulation→ low g m.

128 nm / 64 nm / 32 nm HBT Fabrication

256 nm Generation InP DHBT 150 nm thick collector 70 nm thick collector 60 nm thick collector 200 GHz master-slave latch design Z. Griffith, E. Lind J. Hacker, M. Jones 324 GHz Amplifier

Process Must Change Greatly for 128 / 64 / 32 nm Nodes Undercutting of emitter ends......and loss of emitter adhesion. control undercut → thinner emitter thinner emitter → thinner base metal thinner base metal → excess base metal resistance {101}A planes: fast {111}A planes: slow

128 / 64 nm HBT Process: Where We Are Going Key Features: contact metals: no liftoff sputter deposition dry etched ohmic contacts base & emitter refractory: thermally stable target ~2000 GHz device semiconductor junctions dry etched self-aligned

Conclusion

Fabrication Processes for nm/THz III-V Transistors nm junctions... self-alignment: dielectric sidewall spacers height-selective etching ~100 mA/  m 2 current densities refractory contacts sputter-deposited dry-etched ~1  m 2 contact resistivities dry-etched junctions, minimal wet-etching

(end)

Subthreshold characteristics I on /I off ~ 10 4 :1

Why do we need base regrowth? Regrowth for less resistive base contacts contact moved away from c/b junction better reliability with thin base layers regrowth interface no gap dummy emitter Migration Enhanced Epitaxial Regrowth p =5x10 19 cm -3,  15 cm 2 /Vs

parameterchange collector depletion layer thicknessdecrease 2:1 base thicknessdecrease 1.414:1 emitter junction widthdecrease 4:1 collector junction widthdecrease 4:1 emitter contact resistancedecrease 4:1 current densityincrease 4:1 base contact resistivitydecrease 4:1 Changes required to double transistor bandwidth: Linewidths scale as the inverse square of bandwidth because thermal constraints dominate. Bipolar Transistor Scaling Laws

InP Bipolar Transistor Scaling Roadmap emitter nm width  m 2 access  base nm contact width,  m 2 contact  collector nm thick, mA/  m 2 current density V, breakdown f  GHz f max GHz power amplifiers GHz digital 2:1 divider GHz industryuniversity →industry university appears feasible maybe

THz / nm Transistors: it's all about the interfaces Metal-semiconductor interfaces (Ohmic contacts): very low resistivity Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density Transistor & IC thermal resistivity.

Changes required to double transistor bandwidth: FET Scaling Laws Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale. FET parameterchange gate lengthdecrease 2:1 current density (mA/  m), g m (mS/  m) increase 2:1 channel 2DEG electron densityincrease 2:1 gate-channel capacitance densityincrease 2:1 dielectric equivalent thicknessdecrease 2:1 channel thicknessdecrease 2:1 channel density of statesincrease 2:1 source & drain contact resistivitiesdecrease 4:1

Self-Aligned VLSI Gate-Last Process

Simple FET Scaling Goal double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents All lengths, widths, thicknesses reduced 2:1 S/D contact resistivity reduced 4:1 If T ox cannot scale with gate length, C parasitic / C gs increases, g m / W g does not increase hence C parasitic /g m does not scale