Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Institute of Physics Silesian University.

Slides:



Advertisements
Similar presentations
PSEUDO-NEWTONIAN TOROIDAL STRUCTURES IN SCHWARZSCHILD-DE SITTER SPACETIMES Jiří Kovář Zdeněk Stuchlík & Petr Slaný Institute of Physics Silesian University.
Advertisements

Chapter 8 Gravity.
Planet Formation Topic: Orbital dynamics and the restricted 3-body problem Lecture by: C.P. Dullemond.
X-ray polarisation: Science
Electric Fields The Electric Field Electric Fields Lines Field due to a Point Charge Field due to an Electric Dipole Field due to a Line of Charge Field.
Scott Johnson, John Rossman, Charles Harnden, Rob Schweitzer, Scott Schlef Department of Physics, Bridgewater State College // Bridgewater MA, Mentor:
Particle Creation in GRB Central Region Strong Gravity and Electromagnetic Field Hyun Kyu Lee( 李賢揆 ) Hanyang University 2008 Nanjing GRB Conference June.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 8.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Physics 121: Electricity & Magnetism – Lecture 9 Magnetic Fields Dale E. Gary Wenda Cao NJIT Physics Department.
Chapter 13 Gravitation.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
Key Open Problems in Black Hole Physics and Gravitation Theory Today (A personal perspective!) Pankaj S. Joshi.
Plasma Modes Along Open Field Lines of Neutron Star with Gravitomagnetic NUT Charge JD02-21 B. Ahmedov and V. Kagramanova UBAI/INP, Tashkent, UBAI/INP,
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 4+5. Accretion and X-ray binaries.
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
Electric Charge and Electric Field
Osaka City University Yousuke Takamori Collaborators : Hideki.Ishihara(OCU), Ken-ichi.Nakao(OCU), Masashi.Kimura(OCU),and Chul-Moon Yoo (APCTP) 117/July/
Black Hole (BH)  Introduction to BH  Motivation to study BH  Formation of BH  Cool slides  Size of BH  Properties of BH  Evidence for BH.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
International Workshop on Astronomical X-Ray Optics Fingerprints of Superspinars in Astrophysical Phenomena Zdeněk Stuchlík and Jan Schee Institute of.
Pavel Bakala Martin Blaschke, Martin Urbanec, Gabriel Török and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University.
On integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes David Kubizňák (Perimeter Institute) Relativity and Gravitation.
KERR SUPERSPINARS AS AN ALTERNATIVE TO BLACK HOLES Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian university in Opava.
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
1 Steklov Mathematical Institute RAS G. Alekseev G. Alekseev Cosmological solutions Dynamics of waves Fields of accelerated sources Stationary axisymmetric.
Analysis of half-spin particle motion in static Reissner-Nordström and Schwarzschild fields М.V.Gorbatenko, V.P.Neznamov, Е.Yu.Popov (DSPIN 2015), Dubna,
Hawking radiation for a Proca field Mengjie Wang (王梦杰 ) In collaboration with Carlos Herdeiro & Marco Sampaio Mengjie Wang 王梦杰 Based on: PRD85(2012)
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Multipole moments as a tool to infer from gravitational waves the geometry around an axisymmetric body. Thomas P. Sotiriou SISSA, International School.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
2008 Yousuke Takamori ( Osaka City Univ. ) with Hideki Ishihara, Msashi Kimura, Ken-ichi Nakao,(Osaka City Univ.) Masaaki Takahashi(Aichi.
Equilibrium configurations of perfect fluid in Reissner-Nordström de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-anti-de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-(anti-)de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík & Petr Slaný MG12 Paris,
Zdeněk Stuchlík Gabriel Török, Petr Slaný, Andrea Kotrlová, Jiří Kovář Multi-resonant models of quasi-periodic oscillations in black hole and neutron star.
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Kamila.
Pavel Bakala Gabriel Török, Zdeněk Stuchlík, Eva Šrámková Institute of Physics Faculty of Philosophy and Science Silesian University in Opava Czech Republic.
Black Holes in General Relativity and Astrophysics Theoretical Physics Colloquium on Cosmology 2008/2009 Michiel Bouwhuis.
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Stanislav.
Pavel Bakala,Gabriel Török, Zdeněk Stuchlík and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Black Holes Astrophysics Lesson 14. Learning Objectives To know:-  How to define the event horizon for a black hole.  How to calculate the Schwarzschild.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Paczyński Modulation: Diagnostics of the Neutron Star EOS? Institute of Physics, Silesian University in Opava Gabriel Török, Martin Urbanec, Karel Adámek,
Composition Until 30 years ago, we thought all matter was “baryonic” matter (protons, neutrons, electrons). Now: 4.6% is baryonic matter 95% is non-baryonic.
INFLUENCE OF COSMOLOGICAL CONSTANT ON PARTICLE DYNAMICS NEAR COMPACT OBJECTS Zdeněk Stuchlík, Petr Slaný, Jiří Kovář and Stanislav Hledík Institute of.
Copyright © 2012 Pearson Education Inc. Gravitation Physics 7C lecture 17 Tuesday December 3, 8:00 AM – 9:20 AM Engineering Hall 1200.
Jiří Kovář, Petr Slaný, Vladimír Karas, Zdeněk Stuchlík Claudio Cremaschini and John Miller Claudio Cremaschini and John Miller Institute of Physics Silesian.
A Virtual Trip to the Black Hole Computer Simulation of Strong Lensing near Compact Objects RAGTIME 2005 Pavel Bakala Petr Čermák, Kamila Truparová, Stanislav.
KERR BLACK HOLES Generalized BH description includes spin –Later researchers use it to predict new effects!! Two crucial surfaces –inner surface = horizon.
ON EXISTENCE OF HALO ORBITS IN COMPACT OBJECTS SPACETIMES Jiří Kovář Zdeněk Stuchlík & Vladimír Karas Institute of Physics Silesian University in Opava.
1 Yasushi Mino ( 蓑 泰 志 ) WUGRAV, Washington University at St. Louis Index 1: Introduction 2: Self-force in a Linear Perturbation.
Mike Cruise University of Birmingham Searching for the fifth dimension using gravitational waves.
Genetic Selection of Neutron Star Structure Matching the X-Ray Observations Speaker: Petr Cermak The Institute of Computer Science Silesian University.
Chapter 22 Electric Fields The Electric Field: The Electric Field is a vector field. The electric field, E, consists of a distribution of vectors,
Based on Phys. Rev. D 92, (R) (2015) 中科大交叉学科理论研究中心
Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1.
AQA Physics Gravitational Fields, Electric Fields and Capacitance Section 4 Electric Fields.
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
Dept.of Physics & Astrophysics
Spacetime solutions and their understandings
Electric Field & Magnetic Field
Based on the work submitted to EPJC
Parts, existence of, origin,
Kaluza-Klein Black Holes in 5-dim. Einstein-Maxwell Theory
Global Defects near Black Holes
Local Conservation Law and Dark Radiation in Brane Models
Presentation transcript:

Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Institute of Physics Silesian University in Opava Czech Republic OFF-EQUATORIAL MOTION OF CHARGED PARTICLES NEAR COMPACT OBJECTS Astronomical Institute Czech Academy of Sciences Prague

Halo orbits‘Halo orbits’ – off-equatorial circular orbits of constant r and  (stable orbits) problems to deal withproblems to deal with - halo orbits existence and their basic features [Dullin, Horányi and Howard, 1999, 2002] [Dullin, Horányi and Howard, 1999, 2002] (weak GF) [Kovář, Stuchlík and Karas, 08, Class. Quantum Gravity] [Kovář, Stuchlík and Karas, 08, Class. Quantum Gravity] (strong GF) [Calvani, de Felice, Fabbri, Turolla, 82, Nuevo Cimento] - related off-equatorial motion [Karas, Vokrouhlický,92, General Relativity and Gravitation] [Kopáček, Kovář, Karas and Stuchlík, 09, in preparation] - astrophysical consequences [ ? ] Introduction

Existence of halo orbits Schwarzschild geometry + rotating dipole MFslowly rotating neutron star Kerr geometry + dipole MFKerr BH with plasma ring Kerr geometry + uniform magnetic fieldKerr BH in galactic MF Kerr-Newman geometryKerr-Newman BH and NS

Einstein-Maxwell’s equations Einstein-Maxwell’s equations Existence of halo orbits Basic equations Schwarzschild geometry + rotating dipole MFslowly rotating neutron star Kerr geometry + dipole MFKerr BH with plasma ring Kerr geometry + uniform magnetic fieldKerr BH in galactic MF Kerr-Newman geometryKerr-Newman BH and NS

GeometryGeometry Schwarzschild Kerr Kerr-Newmann Electromagnetic fieldElectromagnetic field test rotating dipole in Schwarzschild test static dipole in Kerr test uniform in Kerr Kerr-Newmann Existence of halo orbits Backgrounds

HamiltonianHamiltonian Hamilton’s equations constants of motion effective potentialeffective potential Axially symmetric and stationary Existence of halo orbits Effective potential

A: B: Corotating negative charge Existence of halo orbits Neutron stars

C: D: Positive charge counterrotating (corotating) Existence of halo orbits Neutron stars

MFChargeHalo orbits static counter-rotating co-rotating rotating counter-rotating co-rotating Existence of halo orbits Neutron stars

galactic uniform MF current ring Existence of halo orbits Kerr BH with magnetic fields

Black hole - inner Naked singularity Existence of halo orbits Kerr –Newmann BH and NS

Black hole – outer [Calvani, de Felice, Fabbri, Turolla, 82] Existence of halo orbits Kerr –Newmann BH and NS

Equation of motionEquation of motion Separability of equation and searching for constants of motion numerical integration Poincaré surfaces of sectionPoincaré surfaces of section - surface of phase-space - cross sections of the trajectory with another two coordinates fuzzy structure chaotic motion no additional constant curve regular motion additional constant Related trajectories Constants of motion

Related trajectories Kerr-Newmann BH and NS

Takahashi, Koyama ApJ,2009 Related trajectories Kerr BH + dipole MF

Kerr BH and dipole MFKerr-Newmann NS Regular motion Chaotic motion Related trajectories Charged particles motion

1.We have proved the existence of stable halo (off-equatorial) orbits of charged particles near all of the investigated models of the compact objects. 2.Except the unique Kerr-Newmann case, the motion of particles along the halo orbits in the studied cases is chaotic, with the degree of chaoticness growing with the growing energy of particles, especially when both the halo lobes are joined in the equatorial plane or allow the inflow of particles into the BH 3.We expect halo clouds of charged particles to exist near compact objects, regardless the “rough” used models (the single test particle approximation and approximative background description). Summary

RAGtime workshops (Opava) IAU Symposium (Tenerife) Acknowledgement