SCH-Br Summary of spectra vs T, (slides: 3-7 (“hot”); 10-11(“cold”)) calc. vs. exp. chemical shift differences for ax.-eq. (C2-C6, C3-C5, C4) (slides 11)

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

Procedure for manipulating / analysing Dynamic NMR (DNMR) data (example: DNMR data for the compound 1-Silyl-1-Silacyclohexane, C5H10SiHSiH (schsih3) By.
SCH-tBu; working procedure; update:
CCCC 8 CCCC CCCC 8 CCCC.
HCl, dep. Calc. E0,V10,V11
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
CCCC CCCC CCCC CCCC.
Chapter 18: Chemical Equilibria Irreversible reactions: The reactants combine to form products and the reaction stops when the limiting reagent has been.
Chapter 13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Chapter 13: Nuclear Magnetic Resonance Spectroscopy.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
HCl, d 3  1 PC(AK)/C:,.....HCl-Triplet states ak.ppt Agust,heima,...HCl-Potentials ak.pxp Agust, heima,...HCl-Triplet states.xls PC(AK)/C:,.....Experiment ej.pxp.
cm CH 3 Br 10k 40k 70k CH 3 Br* C*( 1 D 2 )+H 2 +HBr C**( 1 D 2 )+H 2 +HBr J’’ k 150k C + +H 2 +HBr+e.
HBr, F1D2, v´=1
HCl agust,heima,...Sept10/aHCl(3+1)j3S(0)Calc ak.pxp (JMS paper) agust,www,....Sept10/PPT ak.ppt agust,heima,...Sept10/HCl(3+1)j3Sigma(0) Calc ak.pxp.
HCl, ; exp vs calc potentials: Agust,www,..../rempi/hcl/HCl,agust07-/HCl-exp vs calc pot akab.ppt Agust,heima,.../REMPI/HCl/HCl,agust07-/HCl-Potentials avhwak.pxp.
CH3Br, HBr spectra Agust, heima,... Jan10/CH3Br18750_19250-Hbr-sim km ak.pxp Agust, www,...Jan10/PPT ak.ppt.
HCl, Morse pot fit to calc. F state (CCSD & CCSD(T); AB calc, ): Agust,heima,.../REMPI/HCl/HCl,agust07-/HCl-Morse fit-F ak.pxp & Agust,www,.../rempi/hcl/HCl,agust07-/HCl-Morse.
HCl Calc. Vs exp (f3D2) state(Morse Pot): AK(PC-Labt)/C....Experiment ej.pxp AK(PC-Labt)/C....Experiment ejak.ppt Data from pxp file from EJ:
Bruice, Organic Chemistry, 6e
Translations and Completing the Square © Christine Crisp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
1 § Quadratic Functions The student will learn about: Quadratic function equations, quadratic graphs, and applications.
Chapter 10 - Review States of Matter Milbank High School.
Scatter plots and Regression Algebra II. Linear Regression  Linear regression is the relationship between two variables when the equation is linear.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Since  G is very temperature dependent, it can be replaced by enthalpy (  H) and entropy (  S)  G =  H - T  S (2) Substituting (2) into (1) yields.
THERMOCHEMISTRY CP Unit 9 Chapter 17.
4/17/2012 Standards: 7 (Chemical Thermodynamics) Objectives: ● Be able to calculate Specific Heat Problems involving use of J/gºC DO NOW: 1. Vocab words.
HI H(1) vs V(m+6) & O(0) vs. V(m+7):
EXAMPLE 3 Graph a function of the form y = ax 2 + bx + c Graph y = 2x 2 – 8x + 6. SOLUTION Identify the coefficients of the function. The coefficients.
SCH-X; X =F, Cl,Br,I Summary: K(eq->ax) (vs T) ax) >(vs T)  G # (eq->#) references.
12.1 Test Review. What is percent composition? the percent (by mass) of all the elements in a compound.
Linear Approximation Lesson 2.6. Midpoint Formula Common way to approximate between two values is to use the mid value or average Midpoint between two.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
Warm Up Lesson 4.1 Find the x-intercept and y-intercept
Thermodynamics X Unit 9. Energy: Basic Principles  Thermodynamics – the study of energy changes  Energy – the ability to do work or produce heat Kinetic.
Introduction Thermodynamics. Thermo It is hot Measure of HEAT.  form of energy  depends on amount of matter  total vs. It is cold the same thing!!!
1 Chemical Quantities Chapter How to measure matter? Three ways to measure matter 1. By counting 2. By mass 3. By volume.
Ch. 17 Thermochemistry and Energy A liquid freezing and boiling at the same time, really?!
Avogadro’s Number and Molar Conversions Mole: the SI base unit used to measure the amount of a substance whose number of particles is the same as the number.
Home work Assignment No # 1 ChE 333: Mass Transfer Department of Chemical and Materials Engineering Faculty of Engineering King Abdulaziz University Jeddah,
MOLAR MASS CHAPTER 7-2.
Download NUTS for Windows:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Parabolas (part 2) I. Vertex form of a Parabola.
Energy EQ: What is the relationship between heat energy and temperature?
Chemical Reaction Energy
عمل الطالبة : هايدى محمد عبد المنعم حسين
Algebra and Science are Cousins
SCH-CN H Si CN CN Si H PPT:
Molar Conversions.
EEV, DI, S3,
Thermodynamics!.
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
GeCH-Me Summary of spectra vs T, DNMR analysis and figure for publication PPT:
Unit 6, Lesson 2: Structure of the Atom
H(0), one-color, VMI and slicing images
MestRe-C: pages: Start program……………………………………………………………
SCH-Cl Summary of spectra vs T, (slides: 3-7 (“hot”); (“cold”))
Chapter 5.1 & 5.2 Quadratic Functions.
The Mole.
T [K] Ge Me Ge Me Me.
You and your lab partner independently determine the concentration of Ca2+ in a water sample. The results are: You Lab partner 350 ppm
Thermochemistry Feeling hot, hot, hot.
Molar Conversions.
SCH-I Summary of spectra vs T, (slides: 3-7 (“hot”); 9-10(“cold”))
Drawing Graphs The parabola x Example y
Equilibrium.
Find a reasonable domain given a situation
CH-CN PPT: PXP:
Presentation transcript:

SCH-Br Summary of spectra vs T, (slides: 3-7 (“hot”); 10-11(“cold”)) calc. vs. exp. chemical shift differences for ax.-eq. (C2-C6, C3-C5, C4) (slides 11) DNMR-analysis for C3-C5 (slides: 12-14) PPT´s: IGOR´s: XLS´s : Si Br H Si Br H

nuts and txt- TNMR [K]zTcorr [K]file namesi:size/K SCH-Br ib b b b b b b b b b b b64 highb64

TNMR [K]Tcorr [K] high C4 C3,C5 C2,C6 ppm SCH-Br

TNMR [K]Tcorr [K] high C2,C6 ppm SCH-Br

TNMR [K]Tcorr [K] high ppm SCH-Br C3,C5 eq. ax. X X

TNMR [K]Tcorr [K] high ppm SCH-Br C4

Calc, ax.-eq = C4 C3,C5 C2,C6 SCH-Br ppm

Comments: Chemical shift calculations seem to overestimate abs(ax.-eq.) spacings for C2/C6 & C3/C5 Not clear what is the case for C4 Only possible to determne chemical shift for eq. For C3,C5 Further cooling needed to determine chemical shifts for eq. For C2,C6 and C4 New “colder” spectra added:

ppm TNMR [K]Tcorr [K] high C4 C3,C5C2,C6 SCH-Br TNMR [K]Tcorr [K]

Layout:0, Gr:0 ppm C4 C3,C5C2,C6 SCH-Br TNMR [K]Tcorr [K] eq

ppm C4 C3,C5C2,C6 SCH-Br eq ax.-eq = Calc. Exp. TNMR [K]Tcorr [K] ppm ppm

parametervalueunit R8.315J K-1 mol K K(eq->ax) %a(e) (low field; Cl eq)14.3 %b(a) (high field: Cl3 ax)85.7 DG(eq->ax) J mol-1 DG(eq->ax) kJ mol-1 DG(eq->ax) kcal mol-1 conversion factor0.239kcal/kJ kB1.381E-23J K-1 h6.626E-34J s R8.315J K-1 mol-1 Si Br Si Br ax eq G G#G# (eq->#; see below)

kcal mol-1 DG#(eq->#) Tc ksum k(eq->ax)k(ax->eq) T corr G#G#  G # =  H # -T  S # =>  H # = 4.46 kcal mol -1 ;  S # = kcal mol -1 K -1 / +7.5 cal mol -1 K -1 (eq->#) Coefficient values ± one standard deviation a= ± b= ± Lay:,0 Gr: Average:+/- C3,C5 analysis:

Or parabola fit: T corr G#G# (eq->#) Coefficient values ± one standard deviation K0= ± 4.34 K1= ± K2= ± Lay:,0 Gr: Average:+/- C3,C5 analysis:

Lay:,1 Gr:1 TNMR [K]Tcorr [K] k(eq->ax): Simulation: Red: exp./black dots: calc. C3,C5 eq ax

k eq,ax (s -1 ) Calc.Exp. T(K)