Development of RPC based PET B. Pavlov University of Sofia.

Slides:



Advertisements
Similar presentations
1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
Advertisements

PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Wang Yi, Tsinghua University SoLID collaboration meeting, Status of MRPC-TOF 1 Wang Yi Department of Engineering Physics Tsinghua University,
Quartz Plate Calorimeter Prototype Ugur Akgun The University of Iowa APS April 2006 Meeting Dallas, Texas.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
DFNA-Ilie Cruceru PERSPECTIVES FOR A POSITRON EMISSION TOMOGRAPHY (PET) PLANT BASED ON RESISITIVE PLATE COUNTER (RPC) Ilie Cruceru, Mihai Petrovici, Florin.
Alexander Klyachko, IU Cyclotron, PTCOG51, Seoul, South Korea, May 17-19, 2012 A.V. Klyachko 1, D.F. Nichiporov 1, L. Coutinho 2, C.-W. Cheng 2, 3, M.
Aging, High Rate and Shielding L. Lopes Lip-Coimbra.
Status of MRPC-TOF Wang Yi Department of Engineering Physics Tsinghua University, Beijing, China 1.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Topics in Medical Physics Xiaoming Zheng, PhD. School of Dentistry and Health Sciences December 2009, Chengdu.
New MRPC prototypes developed in Tsinghua Unversity Huangshan Chen (Tsinghua Unversity)
Monte Carlo simulation in Physics research Subhasis Chattopadhyay Variable Energy Cyclotron Centre Kolkata-India.
Very High Resolution Small Animal PET Don J. Burdette Department of Physics.
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
November 5, 2004V.Ammosov ITEP-Moscow, Russian CBM meeting 1 IHEP possible participation in CBM TOF system Vladimir Ammosov Institute for High Energy Physics.
Experiences with RPC Detectors in Iran and their Potential Applications Tarbiat Modares University Ahmad Moshaii A. Moshaii, IPM international school and.
0 A Fast Time Incorporating Monte-Carlo Simulation of Wire Chamber Based Small Animal PET Scanners for Detector Scatter Correction M. Dawood 1, Don Vernekohl.
Cross-talk in strip RPCs D. Gonzalez-Diaz, A. Berezutskiy and M. Ciobanu with the collaboration of N. Majumdar, S. Mukhopadhyay, S. Bhattacharya (thanks.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Fundamental Limits of Positron Emission Tomography
RPCs in biomedical applications Research Program of National Interest - PRIN University of Pavia & INFN (Italy) RPC 2005, Seoul, October 2005 Monica.
Third workshop on hadron physics in ChinaWang Yi, Tsinghua University A conceptional design of SOLID-TOF Outline: Development of low resistive glass and.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
HEALTH Novel MR-compatible PET detectors for simultaneous PET/MRI imaging FP7-HEALTH-2009-single-stage The focus should be to develop novel.
The Readout Electronics for Upgrading of BESIII End-capTOF Chunyan Yin University of Science and Technology of China University of Science and Technology.
Diego Gonzalez Diaz University of Santiago de Compostela ITEP IHEP (Protvino), ITEP (Moscow), INR (Moscow), LIP(Coimbra), USC(Santiago de Compostela)
(Santiago de Compostela-Spain)
1 Christian Lippmann Detector Physics of Resistive Plate Chambers Introduction Simulation of RPCs Time Resolution Efficiency Charge Spectra Detailed.
Elba, 27 May 2003Werner Riegler, CERN 1 The Physics of Resistive Plate Chambers Werner Riegler, Christian Lippmann CERN.
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
16. January 2007Status Report On Compton Imaging Projects 1 Status Of Compton Imaging Projects Carried Out In The CIMA Collaboration HPD Brain PET Meeting.
Mariana Petris, CBM Collaboration Meeting, October 13-18, 2008, Dubna Mariana Petris, NIPNE - Bucharest C B M In-Beam Test Results of the Pestov Glass.
长读出条 MRPC 性能研究 孙勇杰 Key Laboratory of Technology of Particle Detection and Electronics, USTC-IHEP, CAS Center of Particle Physics and Technology, USTC.
July 8, 2003V.Ammosov GSI, CBM meeting1 RPC TOF system for HARP experiment (Applicability for CBM) Vladimir Ammosov Institute for High Energy Physics Protvino.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
K. Jahoda, 6 Aug 2007 X-ray School, GWU Proportional Counters Some of what you should know in order to use proportional counters for Spectroscopy, Timing,
Study of the Spatial Resolution and Muon Tomographic Imaging Properties of Glass RPCs Qite Li Peking University.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
The effect of surface roughness
Timing in Thick Silicon Detectors Andrej Studen, University of Michigan, CIMA collaboration.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
INSTR L.Shekhtman 1 Triple-GEM detectors for KEDR tagging system V.M.Aulchenko, A.V.Bobrov,A.E.Bondar, L.I.Shekhtman, E.V.Usov, V.N.Zhilich,
Marcello Abbrescia RPCs for CMS during Phase II RPC rate capability M. Abbrescia, The dynamic behaviour of Resistive Plate Chambers, NIM A 533 (2004) 7–10.
For 2016 RPCWorkshop 1 Charge Distribution dependency on gap thickness of CMS endcap RPC Sung Park, KODEL, Korea Univ On behalf of the CMS RPC group 1.
Nuclear Medicine Physics and Equipment 243 RAD 1 Dr. Abdo Mansour Assistant Professor of radiology
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
RPC February 2010 SPATIAL RESOLUTION OF HUMAN 3D RPC-PET SYSTEM 1 LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra,
DEVELOPMENT OF MULTI-GAP RESISTIVE PLATE CHAMBER(MRPC) FOR MEDICAL IMAGING Arnab Banerjee 1, Arindam Roy 1, Saikat Biswas 1,2*, Subhasis Chattopadhyay.
NSS2006Shengli Huang1 The Time of Flight Detector Upgrade at PHENIX Shengli Huang PHENIX Collaboration Outlines: 1.Physics motivations 2.Multi-gap Resistive.
Hybrid Detector(s) for Complete Gamma Ray Spectroscopy S. S. Bhattacharjee, R Raut, S S Ghugre, A K Sinha UGC-DAE Consortium For Scientific Research, Kolkata.
Werner Riegler, Christian Lippmann CERN Introduction
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
6:th IWORID, Glasgow, Scotland, July 2004 Energy Dependence in Dental Imaging with Medipix 2 Börje Norlin & Christer Fröjdh Mid Sweden University.
Space Charge Effects and Induced Signals in Resistive Plate Chambers
Positron emission tomography without image reconstruction
Towards the application of patterned RPCs to very high resolution PET for small animals P. Fonte In the framework of the RD51 collaboration.
Results achieved so far to improve the RPC rate capability
The Lund R3B prototype: In-beam proton tests and simulations
Sensitivity of Hybrid Resistive Plate Chambers to Low-Energy Neutrons
RPC working gas (C2H2F4/i-C4H10/SF6): Simulation and measurement
Detailed simulations of a full-body RPC-PET scanner
Development of a High Precision Axial 3-D PET for Brain Imaging
Application of Nuclear Physics
Conceptual design of TOF and beam test results
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
一种基于晶体间光分享原理的深度测量PET探测器
Assist. Prof. Dr. Ilker Ozsahin Oct
Werner Riegler, Christian Lippmann CERN Introduction
Presentation transcript:

Development of RPC based PET B. Pavlov University of Sofia

7.V.2010ECFA 2010, B. Pavlov2 Outline  Positron Emission Tomography (PET)‏  Resistive Plate Chambers (RPC)‏  Why RPC for PET ?  RPC design and optimizations  Detector read-out  Conclusions

7.V.2010ECFA 2010, B. Pavlov3  G. Muehllehner, J.S. Karp, Phys. Med. Biol. 51 (2006) R117–R137  T.K Lewellen, Phys. Med. Biol. 53 (2008) R287–R317  G. Muehllehner, J.S. Karp, Phys. Med. Biol. 51 (2006) R117–R137  T.K Lewellen, Phys. Med. Biol. 53 (2008) R287–R317 Positron-Emission Tomography (PET) ‏

7.V.2010ECFA 2010, B. Pavlov4 Usually cyclotrons are used to generate commonly used PET isotopes IsotopeHalf life 11 C20.3 min 15 O2.03 min 18 F109.8 min 9 B98.0 min 13 N~10 min PET tracers FDG (fluorodeoxyglucose), as a glucose analogue, is taken up by high-glucose-using cells such as brain, kidney, and cancer cells. Commonly used tracers: water ammonia glucose and glucose analogues oxygen

7.V.2010ECFA 2010, B. Pavlov5 Commercial PET

7.V.2010ECFA 2010, B. Pavlov6  B.J. Pichler, H.F. Wehrl, M.S. Judenhofer, J. Nucl. Med. 49/2 (2008) 5–23  N.E. Bolus et al., J. Nucl. Med. Technol. 37/2 (2009)  B.J. Pichler, H.F. Wehrl, M.S. Judenhofer, J. Nucl. Med. 49/2 (2008) 5–23  N.E. Bolus et al., J. Nucl. Med. Technol. 37/2 (2009) PET – physical limitations & problems

7.V.2010ECFA 2010, B. Pavlov7  R. Santonico and R. Cardarelli, Nucl. Instr. Meth. A187, (1981) ‏ Resistive-Plate Chambers (RPC) ‏

7.V.2010ECFA 2010, B. Pavlov8 converter resistive plates detecting strips  A. Blanco et al., Nucl. Instr. Meth. A508, (2003) ‏  P. Fonte, A. Smirnitski, M.C.S. Williams, NIM A 443, (2000) ‏ RPC-PET electron avalanche electron photons

7.V.2010ECFA 2010, B. Pavlov9 High price Higher sensitivity for scattered photons Parallax error Time resolution > 200 ps Spatial resolution ~ 2-3 mm PMT, APD,... FOV cm Much cheaper Sensitivity decreases with E Practically no parallax Time resolution ~ 30 ps Spatial resolution ~ 300 μm No need of PM Large area → large FOV ~ 1 m Not affected by magnetic fields Main problem: increase efficiency for 511 KeV photons Scintillator-based vs RPC-PET

7.V.2010ECFA 2010, B. Pavlov10  A. Blanco et al., Nucl. Instr. Meth. A533, (2004) ‏  A. Blanco et al., Nucl. Instr. Meth. A508, (2003) ‏  C. Lippmann, H. Vincke, W. Riegler, NIM A602, (2009) ‏  S. An et al., ‏ Nucl. Instr. Meth. A594, (2008) ‏  A. Blanco et al., Nucl. Instr. Meth. A508, (2003) ‏  C. Lippmann, H. Vincke, W. Riegler, NIM A602, (2009) ‏  S. An et al., ‏ Nucl. Instr. Meth. A594, (2008) ‏  M. Couceiro et al., Nucl. Instr. Meth. A580, (2007) ‏  A. Blanco et al., Nucl. Instr. Meth. A602, (2009)  M. Couceiro et al., Nucl. Instr. Meth. A580, (2007) ‏  A. Blanco et al., Nucl. Instr. Meth. A602, (2009) spatial resolution of 0.6 mm FWHM without optimization time resolution ~ tens of ps 1.5–2 times lower sensitivity to 300 KeV photons vs 511 KeV ones RPC-PET: state of art

7.V.2010ECFA 2010, B. Pavlov11 RPC PET R&D Two main goals: To increase the efficiency for 511 keV photons To suppress Compton scattered photons Photon spectrum simulation GEANT simulation of different RPC designs GEANT simulation of multigap RPC  N. Ilieva et al., API Conf. Proc. 1203, , (2010)‏

7.V.2010ECFA 2010, B. Pavlov12 gamma (filter)‏ gas resistive plate (insulator)‏ detecting strips converter Gas – converter design Maximal electron yield 0.30% for tungsten, 0.38 % for lead

7.V.2010ECFA 2010, B. Pavlov13 Gas – converter design e yield and ejected electrons for 5 conv. (% from the initial photon number) ‏ BUT higher sensitivity for scattered in the body photons ! e yield for 5 conv. (% from the initial photon number) ‏

7.V.2010ECFA 2010, B. Pavlov14 Gas – insulator - converter design Maximal electron yield for 511 KeV photons (0.315 ± 0.005) % (~ 0.17% lower than in Gas - Conv. design) ‏ converter

7.V.2010ECFA 2010, B. Pavlov15 Gas – insulator - converter design e - yield vs width for 5 different energies => converter width 40 μm e - yield vs photon energy for 40 μm converter

7.V.2010ECFA 2010, B. Pavlov16 Gas – insulator - converter design e - yield vs insulator width for 5 different energies => insulator width 100 ÷ 200 μm

7.V.2010ECFA 2010, B. Pavlov17 Multi-gap GIC design 100 gaps provide sufficient amplification lower-energy photons suppression strips gas gap glass PCB mylar Bi or Pb oxide max yield 511 KeV ~ 43%

7.V.2010ECFA 2010, B. Pavlov18 Multi-gap GIC design Max yield for 511 KeV: (23.8 ± 0.4)% converter Bi, 50 μm glass 50 μm Highest sensitivity for 511 KeV 511 / 307 ~ 2:1

7.V.2010ECFA 2010, B. Pavlov19 86% from the registered photons have energies > 383 KeV Thus Compton suppression is achieved !!! Multi-gap GIC design „Body“ spectrumConvolution of spectrum and response RPC response

7.V.2010ECFA 2010, B. Pavlov20 RPC readout electronics Dedicated electronics based on NINO ASIC and HPTDC is under development. For the moment ALICE TOF FEAs (based on NINO) and HADES TRBs (based on HPTDC) are used.

7.V.2010ECFA 2010, B. Pavlov21 Conclusions  Model investigations towards the design of an RPC-based PET detector are carried out.  RPC design optimized for PET is obtained.  Prototype production technology is developed.  Dedicated electronics is under development.  First prototypes are ready for investigations.

7.V.2010ECFA 2010, B. Pavlov22 Thank you !

7.V.2010ECFA 2010, B. Pavlov23 Back up slides

7.V.2010ECFA 2010, B. Pavlov24 RPC-PET: design & optimization  Simulation of RPC detectors  Detector „basic unit“: two glass plates, 2 mm gas gap 300 μm  Gas composition: 85% C 2 H 2 F 4 + 5% i-C 4 H % SF 6  Electric field: 100 kV/cm  Simulation of RPC detectors  Detector „basic unit“: two glass plates, 2 mm gas gap 300 μm  Gas composition: 85% C 2 H 2 F 4 + 5% i-C 4 H % SF 6  Electric field: 100 kV/cm

7.V.2010ECFA 2010, B. Pavlov25 RPC-PET: design & optimization  Geant 4 ( ‏ Compton scattering, photo-effect multiple scattering, ionization, Bremsstrahlung  Detector „basic unit“: two glass plates, 2 mm gas gap 300 μm  Gas composition: 85% C 2 H 2 F 4 + 5% i-C 4 H % SF 6  Electric field: 100 kV/cm  Geant 4 ( ‏ Compton scattering, photo-effect multiple scattering, ionization, Bremsstrahlung  Detector „basic unit“: two glass plates, 2 mm gas gap 300 μm  Gas composition: 85% C 2 H 2 F 4 + 5% i-C 4 H % SF 6  Electric field: 100 kV/cm

7.V.2010ECFA 2010, B. Pavlov26 38% absorbed // 82% / initial, 51%: E < 511 KeV 18% / initial, 11%: PET image O 61.4 % C 22.9 % H 10.0 % N 2.6 % Ca 1.4 % P 1.1 % K 0.2 % S 0.2 % Na 0.1 % Cl 0.1 % 40 x 40 x 150 cm g/cm 3 Photon propagation in the human body Compton scattering Photo-effect

7.V.2010ECFA 2010, B. Pavlov27 Electron yield in the gas photons: at least one interaction within the converter has lead to the ejection of an electron into the gas gap photon interaction in the converter & electron propagation to the gas k photon interaction coefficient N γ number of photons at x s electron interaction coefficient Thin converter; a – max e yield; saturation 95% yield thickness Photon-beam attenuation / coeff. c Decrease after the max value

7.V.2010ECFA 2010, B. Pavlov28