What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components? Hrvoje Štefančić Universitat de Barcelona.

Slides:



Advertisements
Similar presentations
Theories of gravity in 5D brane-world scenarios
Advertisements

Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
Finite universe and cosmic coincidences Kari Enqvist, University of Helsinki COSMO 05 Bonn, Germany, August 28 - September 01, 2005.
Massive Gravity and the Galileon Claudia de Rham Université de Genève Work with Gregory Gabadadze, Lavinia Heisenberg, David Pirtskhalava and Andrew Tolley.
Yashar Akrami Modern Cosmology: Early Universe, CMB and LSS/ Benasque/ August 17, 2012 Postdoctoral Fellow Institute of Theoretical Astrophysics University.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Tomographic approach to Quantum Cosmology Cosimo Stornaiolo INFN – Sezione di Napoli Fourth Meeting on Constrained Dynamics and Quantum Gravity Cala Gonone.
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Spherical Collapse in Chameleon Models Rogerio Rosenfeld Rogerio Rosenfeld Instituto de Física Teórica Instituto de Física Teórica UNESP UNESP 2nd Bethe.
José Beltrán and A. L. Maroto Dpto. Física teórica I, Universidad Complutense de Madrid XXXI Reunión Bienal de Física Granada, 11 de Septiembre de 2007.
Physical Constraints on Gauss-Bonnet Dark Energy Cosmologies Ishwaree Neupane University of Canterbury, NZ University of Canterbury, NZ DARK 2007, Sydney.
Growing neutrinos and cosmological selection. Quintessence C.Wetterich A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes, R.Caldwell,
Cosmology Overview David Spergel. Lecture Outline  THEME: Observations suggest that the simplest cosmological model, a homogenuous flat universe describes.
Quantum Tunneling of Thin Wall Matthew C. Johnson, in collaboration with Anthony Aguirre.
Lecture 23 Models with Cosmological Constant ASTR 340 Fall 2006 Dennis Papadopoulos Chapter 11 Problems Due 12/5/06.
Cosmic Coincidence and Interacting Holographic Dark Energy ncu Suzhou Dark Universe Workshop.
Holographic Dark Energy Preety Sidhu 5 May Black Holes and Entropy Black holes are “maximal entropy objects” Entropy of a black hole proportional.
Horizon and exotics. 2 Main reviews and articles gr-qc/ Black Holes in Astrophysics astro-ph/ No observational proof of the black-hole event-horizon.
Coupled Dark Energy and Dark Matter from dilatation symmetry.
1 L. Perivolaropoulos Department of Physics University of Ioannina Open page
Macroscopic Behaviours of Palatini Modified Gravity Theories [gr-qc] and [gr-qc] Baojiu Li, David F. Mota & Douglas J. Shaw Portsmouth,
Voids of dark energy Irit Maor Case Western Reserve University With Sourish Dutta PRD 75, gr-qc/ Irit Maor Case Western Reserve University With.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Near-Horizon Solution to DGP Perturbations Ignacy Sawicki, Yong-Seon Song, Wayne Hu University of Chicago astro-ph/ astro-ph/
Renormalization group scale-setting in astrophysical systems Silvije Domazet Ru đ er Bošković Institute,Zagreb Theoretical Physics Division th.
Williams Research Gravity Pharis E. Williams 19 th Natural Philosophy Alliance Albuquerque, NM July, 2012.
Chaplygin gas in decelerating DGP gravity Matts Roos University of Helsinki Department of Physics and and Department of Astronomy 43rd Rencontres de Moriond,
Emergent Universe Scenario
Large distance modification of gravity and dark energy
1 Dynamical Effects of Cosmological Constant Antigravity Μ. Αξενίδης, Λ. Περιβολαρόπουλος, Ε. Φλωράτος Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών ‘Δημόκριτος’
Modified (dark) gravity Roy Maartens, Portsmouth or Dark Gravity?
BRANEWORLD COSMOLOGICAL PERTURBATIONS
Quantum vacuum in cosmology. What is the vacuum in cosmology ?
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
Cosmology, Inflation & Compact Extra Dimensions Chad A. Middleton Mesa State College March 1, 2007 Keith Andrew and Brett Bolen, Western Kentucky University.
Dark Energy The first Surprise in the era of precision cosmology?
Quintom Cosmology Tao-Tao Qiu & Yi-Fu Cai, IHEP (邱涛涛、蔡一夫, 中科院高能所) ( “ 精灵 ” 宇宙学)
Dilaton quantum gravity and cosmology. Dilaton quantum gravity Functional renormalization flow, with truncation :
有效场论、全息原理 暴胀宇宙与暗能量. Effective Field Theory & Holographic Principle An effective field theory that can saturate the equation necessarily includes many.
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
Big bang or freeze ?. conclusions Big bang singularity is artefact Big bang singularity is artefact of inappropriate choice of field variables – of inappropriate.
Expanding Universe or shrinking atoms ?. Big bang or freeze ?
IRGAC 2006 Renormalization Group Running Cosmologies – from a Scale Setting to Holographic Dark Energy Branko Guberina Rudjer Boskovic Institute Zagreb,
Dark Energy in f(R) Gravity Nikodem J. Popławski Indiana University 16 th Midwest Relativity Meeting 18 XI MMVI.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 10.
Anisotropic Evolution of D-Dimensional FRW Spacetime
Recent Progress on Dark Energy Study Xinmin Zhang IHEP
Leading order gravitational backreactions in de Sitter spacetime Bojan Losic Theoretical Physics Institute University of Alberta IRGAC 2006, Barcelona.
Neutrino Models of Dark Energy LEOFEST Ringberg Castle April 25, 2005 R. D. Peccei UCLA.
A MANIFESTLY LOCAL T HEORY OF V ACUUM E NERGY S EQUESTERING George Zahariade UC Davis.
The dark side of the Universe: dark energy and dark matter Harutyun Khachatryan Center for Cosmology and Astrophysics.
Marco Bruni, ICG, University of Portsmouth & Dipartimento di Fisica, Roma ``Tor Vergata” Paris 8/12/05 Dark energy from a quadratic equation of state Marco.
ERE 2008September 15-19, Spanish Relativity Meeting 2008, Salamanca, September (2008) Avoiding the DARK ENERGY coincidence problem with a COSMIC.
Theoretical Aspects of Dark Energy Models Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences CCAST, July 4, 2005.
Holographic Dark Energy and Anthropic Principle Qing-Guo Huang Interdisciplinary Center of Theoretical Studies CAS
Understanding the Dark Energy From Holography
Determination of cosmological parameters Gong-Bo Zhao, Jun-Qing Xia, Bo Feng, Hong Li Xinmin Zhang IHEP, Beijing
ETSU Astrophysics 3415: “The Concordance Model in Cosmology: Should We Believe It?…” Martin Hendry Nov 2005 AIM:To review the current status of cosmological.
University of Oslo & Caltech
Machian General Relativity A possible solution to the Dark Energy problem and an alternative to Big Bang cosmology ? Robin Booth Theoretical Physics Imperial.
Thermodynamical behaviors of nonflat Brans-Dicke gravity with interacting new agegraphic dark energy Xue Zhang Department of Physics, Liaoning Normal University,
Recent status of dark energy and beyond
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
暗能量、残余引力波、CMB极化 Dark energy, relic GW and CMB polarization 张杨 (Yang Zhang) 中国科学技术大学 (USTC) 天体物理中心(CFA) 2018/12/3.
2012 International Workshop on String Theory and Cosmology
Stealth Acceleration and Modified Gravity
Alcaniz, Chen, Gong , Yu , Zhang
Big bang or freeze ?.
Tev particle astrophysics at IHEP
Cosmological Scaling Solutions
Presentation transcript:

What is in the black box of dark energy: variable cosmological parameters or multiple (interacting) components? Hrvoje Štefančić Universitat de Barcelona IRGAC 2006, Barcelona July 14, 2006

Accelerating universe ● accelerating universe – observationally established ● mechanism behind the acceleration? ● dark energy ● alternative mechanisms: modified gravity, braneworlds,... ● dark energy – single component which encodes all our ignorance – efficient effective description - “a black box”

Cosmic coincidences ● w presently close to -1 ● possible CC boundary crossing at small redshift ● the ratio of dark energy density and matter energy density presently of order 1 ● Variable cosmological parameters (phenomenology, RGE approaches, holographic DE, 4D effective description of the dynamics in higher dimensions) ● composite dark energy (multiple dark energy components) observational features proposed approaches S. Hannestad, E. Mortsell, JCAP 0409 (2004) 001 A. Upadhye, M. Ishak, P.J. Steinhardt, Phys. Rev. D 72 (2005) H.K. Jassal, J.S. Bagla, T. Padmanabhan, astro-ph/ G-B. Zhao, J-Q. Xia, B. Feng, X. Zhang, astro-ph/

Formalism – variable cosmological parameters ● modification of GR at the level of Einstein equation ● Generalized Bianchi identity ● GR as a limit (for nonvariable parameters)

Cosmology – variable cosmological term picture ● FRW metrics – generalized Bianchi identity gives 1) 2) 3) 4) variable CC energy densitymatter density (possibly interacting)

Variable cosmological term picture ● variability of parameters with redshift ● Hubble parameter

Cosmology – dark energy picture ● standard formalism dark energy matter (noninteracting)

Matching of pictures ● Effective dark energy behaviour – matching of pictures ● general results J. Solà, H. Š., Mod. Phys. Lett. A 21 (2006) Generalized Bianchi identity

Matching of pictures (2) ● redshift dependence of the efective dark energy EOS existence of z* close to z=0

Effective dark energy EOS ● slope of the effective dark energy monotonously growing with redshift phantom-like quintessence-like monotonously falling with redshift quintessence-like phantom-like

Dark energy effective EOS ● noninteracting (conserved – standard scaling)

An example – RG motivated model ● Hubble parameter as a RG scale J. Solà, H. Š., Phys. Lett. B 624 (2005) 147

Redshift dependence of the effective EOS (1)

Redshift dependence of the effective EOS (2)

Explanation of w(z) “coincidence” ● If it exists (to be hopefuly resolved by the upcoming observational data), the CC boundary transition – should happen at small redshift – is allowed for a wide range of parameters (no special values need to be chosen) ● The parameter of effective dark energy EOS is at present close to w(0)=-1 (general result) ● w(z) may exibit substantial variation with the redshift

Composite dark energy ● matter component (noninteracting) ● two (interacting) dark energy components: (variable) cosmological term + additional dynamical component J. Grande, J. Solà, H. Š., gr-qc/ interaction dynamics

Evolution of analytical (closed form) solution – simple expressions for =const stopping of the expansion: H(z)=0 r has a maximum! How high is it? the redshift dependence of (z)?

Parameter constraints ● nucleosynthesis bound: ● existence of the expansion stopping ● height of the maximum of r :

Parametric dependence ● dependence

Time evolution ● The peak of r(z) is less pronounced

Special cases and extensions ● The effect persists for. r is not bounded from below ● Variable cosmological term Lambda and variable Newton coupling G – similar results J. Grande, J. Solà, H. Š., in preparation

Conclusions ● effective dark energy picture for the cosmological models with variable parameters ● general and simple analitic results - “RG like” relation between and ● counterintuitive behaviour of the effective dark energy density ● explanation of w(z) “coincidences” ● composite dark energy – solution of the r(z) coincidence problem – when the expansion of the universe stops, r(z) is bounded from above – r(z) may stay close to r(0) for a nonnegligible volume of the parametric space

Auxilliary slides

Observational evidence ● Dark energy EOS w(z) – various parametrizations used – variability with the redshift – w(z) close to -1 – indication of CC boundary crossing S. Hannestad and E. Mortsell, JCAP 0409 (2004) 001 w(a)=w 0 w 1 (a q + a s q )/(a q w 1 +a s q w 0 )

Variable cosmological parameters – motivation (1) ● Phenomenological approaches – “relaxation” of CC – solution of the CC problem – Dirac – big number hypothesis – variable G – cosmology with a decaying vacuum -K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Nucl. Phys. B 287 (1987) 797 – variable CC interacting with matter - J.M. Overduin, F.I. Cooperstock, Phys. Rev. D 58 (1998) – variable G and CC - A. Beesham, Nuovo Cim. B 96 (1986) 17

Variable cosmological parameters – motivation (2) ● RG cosmology – quantum field theory in curved space-time ● soft decoupling -importance of the most massive fields – scale dependent effective quantum gravity action (Einstein-Hilbert truncation) ● RG flow - IR fixed point hypothesis I.L. Shapiro, J. Solà, Phys. Lett. B 475 (2000) 236 I.L. Shapiro, J. Solà, JHEP 0202 (2002) 006 A. Babić, B. Guberina, R. Horvat, H. Š., Phys. Rev. D 65 (2002) I.L. Shapiro, J. Solà, C España-Bonet, P. Ruiz-Lapuente, Phys. Lett. B 574 (2003) 149 A. Bonnano, M. Reuter, Phys. Rev. D 65 (2002) A. Bonnano, M. Reuter, Phys. Lett. B 527 (2000) 9

Variable cosmological parameters – motivation (3) ● A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82 (1999) 4971 ● Effective field theory + entropy constraint = relation between UV( ) and IR (1/L) cutoffs ● excluding all states that lie within their Schwarzschield radius ● Holographic dark energy – M. Li, Phys. Lett. B 603 (2004) ● Variable cosmological term - R. Horvat, Phys. Rev. D 70 (2004)

Variable cosmological parameters – motivation (4) ● Higher-dimensional models (e.g. GR in 4+N dimensions) ● Variability of e.g. G due to dynamics of extra (compactified) dimensions

Effective dark energy EOS

Redshift dependence of the effective EOS (3)