Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.

Slides:



Advertisements
Similar presentations
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Advertisements

J-C. BRIENT (LLR) 1  Introduction with pictures  Prototype design and construction  R&D on the design of the full scale calorimeter CALICE - ECAL silicon-tungsten.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
Charged Particle Tracker for a RHIC/EIC joint detector Detector layouts based on EIC and NLC Physics drivers Silicon detector technologies Simulations.
7 January 2005 MDI Workshop M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V.
LC Calorimeter Ideas and R&D Opportunities Ray Frey, U. Oregon Cornell, Apr 19, 2002 Physics implications The environment The “energy flow” concept Current.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
R Frey 9/15/20031 Si/W ECal Update Outline Progress on silicon and tungsten Progress on readout electronics EGS4 v Geant4 Ray Frey M. Breidenbach, D. Freytag,
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, U.S. LC Calorimeter Group.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
SiD Cal R. Frey1 Some EGS Studies… Compare with Geant4  Questions of range/cutoff parameters EM Resolution understood? Moliere radius – readout gap relation.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
1 Si-W ECal with Integrated Readout Mani Tripathi University of California, Davis LCWS08 Chicago Nov 17, 2008.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
J-C BRIENT Prague Performances studies of the calorimeter/muon det. e + e –  W + W – at  s=800 GeV Simulation SLAC-Gismo Simulation MOKKA-GEANT4.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Silicon-Tungsten EM Calorimeter R&D
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
SiD R&D tasks for the LOI - Subsystem R&D tasks - Summary of SiD R&D - Prioritization of R&D tasks -> Document for DoE/NSF ~Feb 2009 (Mainly based on Marty’s.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
Silicon Detector Tracking ALCPG Workshop Cornell July 15, 2003 John Jaros.
1 R&D Advances: SiW Calorimeter LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
J-C Brient-DESY meeting -Jan/ The 2 detector options today …. SiD vs TDR [ * ] [ * ] J.Jaros at ALCPG-SLAC04 ECAL ECAL tungsten-silicon both optionsHCAL.
CALICE collaboration CALICE collaboration J-C BRIENT LCWS02 – Jeju Island The CALICE –ECAL Silicon - V. Vrba Very FE - S. Manen Readout/DAQ - P. Dauncey.
EMCal Sensor Status (* M. Breidenbach*,
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Test Beam Results on the ATLAS Electromagnetic Calorimeters Lucia Di Ciaccio – LAPP Annecy (on behalf of the ATLAS LAr Group) OUTLINE Description of the.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
A Forward Calorimeter (FoCal) as upgrade for the ALICE experiment at CERN S. Muhuri a, M. Reicher b and T. Tsuji c a Variable Energy Cyclotron Centre,
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
SiD Calorimeter R&D Collaboration
The ECal in the SiD LOI Overview of status and progress
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
Calorimetry for a CLIC experiment
ILC Detector Activities in Korea
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
SiD Electronic Concepts
A Silicon-Tungsten ECal for the SiD Concept
Simulation study for Forward Calorimeter in LHC-ALICE experiment
SiD Tracker Concepts M. Breidenbach
Dual readout calorimeter for CepC
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Some EGS Studies… Compare with Geant4 Questions of range/cutoff
Presentation transcript:

Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003

UT Arlington R. Frey2 Outline Physics Goals for ECal  Resolution requirements R&D for the Si/W ECal for SD  Description  EGS4 model  Required simulation studies  Plans

UT Arlington R. Frey3 ECal Goals Photons in Jets  Id. with high efficiency and measure with reasonable E resolution … in a very busy environment. Demand eff>95% with high purity Photon shower imaging   vertexing (impact param. resolution  1 cm)   º→   Separation from nearby photons, MIPs, h-shower fragments MIP tracking (h , muons)  Id. Hadrons which shower in ECal Reconstruction of taus (eg  →  →    º →  -  -mip) b/c reconstruction – include neutrals in M Q estimate e’s and Bhabhas – easy (readout dynamic range)  Need to revisit requirement for Lum. spectrum Backgrounds immunity  Segmentation  Timing

UT Arlington R. Frey4 SD Si/W Features Moliere radius: 9mm x (  2) Transverse segmentation almost independent of cost within reasonable range (watch thermal load)  Segmentation < Moliere radius → no problem  Readout channels ≈ detector pixels/1000 Radiation damage probably non-issue (neutrons?) Timing “easily” possible with resolution of ns Dynamic range OK Thermal management: Take advantage of low LC duty cycle Flexible long. sampling: Energy resolution vs Money What are limiting contributions of calor. to jet resolution?

UT Arlington R. Frey5 e+e-→jj, 200 GeV; LCDRoot FastMC Perfect pattern recog. 0.01/sqrt(E)  0.01 (EM) 0.01/sqrt(E)  0.01 (HAD) ← 0.10/sqrt(Ej) ← 0.11/sqrt(Mjj)

UT Arlington R. Frey6 EM: 0.12/sqrt(E)  0.01 HAD: 0.50/sqrt(E)  0.02  0.18/sqrt(Ej)  0.19/sqrt(Ej) EM: 0.20/sqrt(E)  0.01 HAD: 0.70/sqrt(E)  0.02  worse

7 E  > 0.5 GeV  0.19/sqrt(Ej) EE E h0 E  > 1 GeV, E h0 >1 GeV  worse E  > 2 GeV  terrible What is minimum energy required for reconstructing neutrals in jets?

8 SD Si/W 5x5 mm 2 pixel  50M pixels For each (6 inch) wafer:  1000 pixels (approx)  One readout chip – analog and digital Simple, scalable detector design:  Minimum of fab. steps  Use largest available wafers  Detector cost below $2/cm 2  Electronics cost even less  A reasonable (cheap?) cost M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center R. Frey, D. Strom U. Oregon V. Radeka Brookhaven National Lab

UT Arlington R. Frey9 Putting together a layer

UT Arlington R. Frey10 Wafer and readout chip Use bump-bonding technique to mate ROC to array of pads on wafer

UT Arlington R. Frey11 Readout chip connections Use bump-bonding technique to mate ROC to array of pads on wafer

UT Arlington R. Frey12 Silicon detector layout considerations DC coupled detectors are simple (cheap)  Used at LEP with AMPLEX-type preamp design  OK as long as leakage currents small and stay small  Straightforward layout uses two metallization layers (OK)  Maximum pixel-readout trace crosstalk is 0.5% (6 μm strip width and 3 μm oxide) AC coupled also possible  Avoid inputting leakage current to preamp  More complicated Complete additional network (hard) Additional layer and vias Cap. breakdown Beware hierarchy of capacitances  DC

UT Arlington R. Frey13 Electronics…New: Timing Dynamic range: MIPs to Bhabhas  500 GeV Bhabha/MIP ≈ 2000 (1 pixel)  Want to maintain resolution at both ends of scale Timing: What do we need?  NLC: 270 ns bunch trains – Do we need to resolve cal. hits within a train?  Bhabhas: 15 Hz for >60 mrad at  What about 2-photon/non-HEP background overlays?  Exotic new physics signatures  Can try to provide timing for each pixel Is ≈10 ns resolution sufficient ?

UT Arlington R. Frey14 Radiation EM radiation dominated by Bhabhas (in forward endcap)  dσ/d  ≈ 10 pb/  3 for t-channel  Consider 1 ab -1, 500 GeV, shower max., and  =60 mrad (worst case) Use measured damage constant (Lauber, et al., NIM A 396)  ≈6 nA increase in leakage current per pixel  Comparable to initial leakage current  Completely negligible except at forward edge of endcap Evaluation of potential neutron damage in progress A 300 GeV electron shower into a readout chip?  “Linear Energy Threshold” (LET) is 70 MeV/mg/cm 2  1 MIP in Si: 1.7 MeV/g/cm 2  Expect no problems (check)

UT Arlington R. Frey15 Heat Does integrated design imply fancy cooling system? Consider: NLC duty cycle is 5x10 -5 (5x10 -3 for TESLA) 270 ns bunch trains at 150 Hz  Use power pulsing of the electronics For example, GLAST-equivalent readout would produce only about 1 mW average power per 1000-channel chip Assumes power duty cycle of … this factor is an important R&D item Current proposed scheme:  Heat conduction thru thick (6 oz) Cu layer in G10 m-board to fixed temperature heat sinks at edges of ECal modules Requires R&D to demonstrate

UT Arlington R. Frey16 EGS4 Model Why? Check Geant4. (Thin sampling layers (Si) tricky.) Longitudinal  Energy resolution  Sampling/cost optimization Transverse  Effective Moliere radius  Dynamic range Hit occupancy for Bhabhas

UT Arlington R. Frey17 Standard SD: 30 Layers, 20 X GeV electrons Total Absorbed Energy Total Energy in Si  E / E ≈ 0.16 /  E

UT Arlington R. Frey18 Standard SD: 5x5 mm 2 pixels with (1) 0.4mm or (2) 2.5mm readout gaps. 10 GeV photons; look at layer 10 Effective Moliere radius

UT Arlington R. Frey19 (contd) 2.5 mm gap0.4 mm gap dx = pixel + 2 pixels + 3 pixels

UT Arlington R. Frey20 Alternative Sampling Configurations 50 GeV electrons SD: 30 x 2/3 X 0 SD vB: 20 x 2/3 X x 4/3 X 0 better containment poorer sampling

UT Arlington R. Frey21 Global simulation studies needed Transverse segmentation and effective Moliere radius  EFA jet reconstruction, dummy  Tau and  reconstruction  Bhabha acolinearity Longitudinal configuration  Number of layers (  1M$ / layer)  vs EM resolution (not now limiting jet resolution)  vs pattern recognition: Recognize hadronic showers Track MIPs EM shower containment Background overlays ↔ timing requirement

UT Arlington R. Frey22 “Technical” simulations planned/in progress Geant4 vs EGS4  Confirm basic description for Si/W  B field on/off  Compare with data (e.g. OPAL luminometer) Dynamic range  Distribution of hit occupancy in a detector wafer for jets SPICE: S/N, crosstalk, timing, etc. 

UT Arlington R. Frey23 Status and Plans “Current” year  Specify silicon detectors for technical prototype studies  out for bids  Qualify detectors; B field test  Design and fab. initial RO chip for technical prototype studies Readout limited fraction of a wafer ($) Bump bonding; finalize thermal plans  Begin tungsten specifications/bids Next year  Order next round of detectors and RO chips  Design and begin fab. of prototype module for beam test Full-depth, 1-2 wafer wide ECal module Next-next year:  3 rd round of detectors and RO chips ?  Begin test beam studies (2005-ish)