Universality of the Nf=2 Running Coupling in the Schrödinger Functional Scheme Tsukuba Univ K. Murano, S. Aoki, Y. Taniguchi, Humboldt-Universität zu Berlin.

Slides:



Advertisements
Similar presentations
Non-perturbative improvement of nHYP smeared fermions R. Hoffmann In collaboration with A. Hasenfratz and S. Schaefer University of Colorado Peak Peak.
Advertisements

Automatic Image Collection of Objects with Similar Function by Learning Human Grasping Forms Shinya Morioka, Tadashi Matsuo, Yasuhiro Hiramoto, Nobutaka.
M. Lujan Hadron Electric Polarizability with n-HYP Clover Fermions Michael Lujan Andrei Alexandru, Walter Freeman, and Frank Lee The George Washington.
1 Meson correlators of two-flavor QCD in the epsilon-regime Hidenori Fukaya (RIKEN) with S.Aoki, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa,
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
TQFT 2010T. Umeda (Hiroshima)1 Equation of State in 2+1 flavor QCD with improved Wilson quarks Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration.
JPS autumn 2010T. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の状態方程式の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Kyushu-koudai,
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
1章 行列と行列式.
本宮市立白岩小学校. 1 はじめに 2 家庭学習プログラム開発の視点 ① 先行学習(予習)を生かした 確かな学力を形成する授業づく り ② 家庭との連携を図った家庭学習の習慣化.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
3.正方行列(単位行列、逆行列、対称行列、交代行列)
1 Hiroshi Ohki, Tetsuya Onogi (YITP, Kyoto U.) Hideo Matsufuru (KEK) October High precision study of B*Bπ coupling in unquenched QCD.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
CGC confronts LHC data 1. “Gluon saturation and inclusive hadron production at LHC” by E. Levin and A.H. Rezaeian, arXiv: [hep-ph] 4 May 2010.
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
A status report of the QCDSF N f =2+1 Project Yoshifumi Nakamura (NIC/DESY) for the QCDSF collaboration Lattice Regensburg Aug. 3, 2007.
Antonio RagoUniversità di Milano Techniques for automated lattice Feynman diagram calculations 1 Antonio RagoUniversità di Milano Techniques for automated.
Self-efficacy(自己効力感)について
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
JPS 2014 SpringT. Umeda (Hiroshima) 偏移境界条件を用いた有限温度格子 QCD の研究 Takashi Umeda (Hiroshima Univ.) JPS meeting, Tokai Univ., Kanagawa, 28 March 2014.
1 Decisions in games Minimax algorithm  -  algorithm Tic-Tac-Toe game Decisions in games Minimax algorithm  -  algorithm Tic-Tac-Toe game.
1.Introduction 2.Formalism 3.Results 4.Summary I=2 pi-pi scattering length with dynamical overlap fermion I=2 pi-pi scattering length with dynamical overlap.
Nf=12 QCD の 非摂動的 running coupling 伊藤 悦子 ( 工学院大学 ) arXiv: and Work in progress A01 KEK 2010/2/15.
Topology conserving actions and the overlap Dirac operator (hep-lat/ ) Hidenori Fukaya Yukawa Institute, Kyoto Univ. Collaboration with S.Hashimoto.
1 2+1 Flavor lattice QCD Simulation on K computer Y.Kuramashi U. of Tsukuba/RIKEN AICS August 2, Mainz.
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
Lattice 2012T. Umeda (Hiroshima)1 Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach Takashi Umeda (Hiroshima Univ.)
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
原子核行列要素の方法による 不一致問題の解決をめざして ( A02 公募研究) メンバー 岩田順敬 (東大) 日野原伸生 (筑波大) 寺崎順 (筑波大、登壇者) 1.Nuclear matrix element (NME) of neutrinoless double- β decay 2.What.
January 2006UKQCD meeting - Edinburgh Light Hadron Spectrum and Pseudoscalar Decay Constants with 2+1f DWF at L s = 8 Robert Tweedie RBC-UKQCD Collaboration.
Lattice2014T. Umeda (Hiroshima) Thermodynamics in the fixed scale approach with the shifted boundary conditions Takashi Umeda (Hiroshima Univ.) Lattice2014,
SU2 カラー NJL モデルのボソナイゼー ションと高温高密度での状態方程式 土岐 博( RCNP/Osaka ) W. Weise (TMU/Muenchen)
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
JPS07 AutumnTakashi Umeda (Tsukuba Univ.)1 Finite temperature lattice QCD with Nf=2+1 Wilson quark action WHOT-QCD Collaboration T.Umeda, S.Aoki, K.Kanaya.
A new method of calculating the running coupling constant --- numerical results --- Etsuko Itou (YITP, Kyoto University) Lattice of William.
今日の内容 高階関数  関数を値として扱う 関数を引数にとる 関数を返す関数 プログラミングの例題  クイックソート.
Pion Correlators in the ε- regime Hidenori Fukaya (YITP) collaboration with S. Hashimoto (KEK) and K.Ogawa (Sokendai)
Towards the QCD equation of state at the physical point using Wilson fermion WHOT-QCD Collaboration: T. Umeda (Hiroshima Univ.), S. Ejiri (Niigata Univ.),
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
JPS spring 2012T. Umeda (Hiroshima)1 固定格子間隔での有限温度格子 QCD の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Kwansei-gakuin, Hyogo,
Lattice 2006 Tucson, AZT.Umeda (BNL)1 QCD thermodynamics with N f =2+1 near the continuum limit at realistic quark masses Takashi Umeda (BNL) for the RBC.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Takeshi Morita Tata Institute of Fundamental Research Resolution of the singularity in Gregory-Laflamme transition through Matrix Model (work in progress)
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
High Power ③ 1 STF Cavity Group Process Log Data Summary of LFD Result of LFD Summary of LFD RF Kirk.
松尾 善典 Based on YM-Tsukioka-Yoo [arXiv: ] YM-Nishioka [arXiv: ]
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
Bootstrapping 2014/4/13 R basic 3 Ryusuke Murakami.
QCD on Teraflops computerT.Umeda (BNL)1 QCD thermodynamics on QCDOC and APEnext supercomputers QCD thermodynamics on QCDOC and APEnext supercomputers Takashi.
RESISTIVE EMERGENCE OF UNDULATORY FLUX TUBES
Low energy scattering and charmonium radiative decay from lattice QCD
Lattice College of William and Mary
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
腎臓移植 腎臓移植の前に、ドナー両方の腎臓は機 能的に良好でなければならない。ドナー の両方の腎臓が機能的に健康であること を保証するために、多数の試験が行われ ている。
ガラス電極pH計での不確かさについて 中村 進 (NMIJ/AIST, Japan)
Topology conserving gauge action and the overlap Dirac operator
QCD thermodynamics on QCDOC Machine
Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration
Neutron EDM with external electric field
IR fixed points and conformal window in SU(3) gauge Theories
Reaction Plane Calibration
EoS in 2+1 flavor QCD with improved Wilson fermion
Presentation transcript:

Universality of the Nf=2 Running Coupling in the Schrödinger Functional Scheme Tsukuba Univ K. Murano, S. Aoki, Y. Taniguchi, Humboldt-Universität zu Berlin S. Takeda for PACS-CS collaboration title

contents ● Introduction ● review about SF scheme ○ finite size scheme ○ definition of running coupling (SF scheme) ● our result ○ set up ○ concludion ○ Nf=2 running coupling in SF by Alpha collaboration (Nucl.Phys.B713: ,2005) ○ purpose of our study

Running coupling (SF scheme) non perturbative result (Nf=2 dynamical) hep-lat / Running coupling (result) (Alpha) -- PT one and non-PT one are same each other(?)

Non-perturbative beta function (SF scheme) hep-lat / Beta function (Nf=2) * Nf=2 non-PT beta become be apart from PT one in strong coupling region. *Nf=2 beta is passing the Nf=0 one.

Iwasaki Action Plaquete Action Gauge action Action of gauge field: Purpose of our study : Check with different Action ( especially strong regime )

purpose : non-PT check of QCD Lattice QCD QCD (perturbative) Hadronic input Develop by Non-PT Jet physics Compare by Perturbatively Low EnergyHigh Energy Intro

● calculation on the PT scale ● cut off scale ● reduce finite size effect ● renormarization scale Advantage 1: solve large lattice problem Restriction of Lattice size SF scheme can reduce this restriction.

● renormarization scale finite size scheme ※ call “scheme” include Finite size effect 有限 サイ ズ sche me ● reduce finite size effect ● cut off scale ● calculation on the PT scale Advantage 1: solve large lattice problem Restriction of Lattice size (Not significant)

we can shift it finite value Ex)& It doesn’t matter whether this part depend on Box size. 展開パ ラメー タ ( 予備 ) Physical obserbable ※ obserbable remain unchanged. point: Running coupling is only expansion parameter

SF scheme define running coupling as coeff of Effective Action Definition of Running coupling ( SF scheme) (Alpha’ 92)

Definition of running coupling Effective Action Back ground field ・ temporal : dirichlet BC : normarization factor SF scheme (予備) (Alpha’92) Spatial: Twisted BC

… … If calculate at same Lattice spacing ・・・ SF scheme solve the Large scale problem 問題2 If calculate over large scale, enormous lattice size is needed. ×25

Step scaling function Possible to follow Running (S= 2) ※) like one integrate beta-function with Initial value u to twice box size. SSF 定義

Calculation of step scaling function β→β’ tune N=2 ( 1- node ) ※ we can choose any lattice size you like. aaa a’ ※ use large for large box β : tune beta a’ SSF 測定法 1.Tune beta for running coupling eqal to u0. 2.Calculate with twice Lattice (same beta) (and get = u1) 3. Tune beta for running coupling equal to u1. 4. Get from calculation in twice Lattice size

N=2 a’ β’→β’’ tune β’’→β’’’ N’ N’’ Constant. Take N large with Tune beta to make

Iwasaki Action Plaquete Action Gauge action Action of gauge field: Purpose of our study : Check with different Action ( especially strong regime )

● Tuning of : (mass independent scheme) Set up ● Fermion action: Clover action (Nf=2) ● Csw: Non-PT ●algorithm : HMC Set up (others) Uncertainty in from mismatch of m is estimated by Perturbatively. beta L (2L)4 (8)6 (12)8 (16)4 (8)6 (12) 8 (16) Machine: cluster machine kaede in academic computing & Communication center Tsukuba Univ (60 cpu )

Boundary O(a) improvement Set up (gauge) gaugefermion plaquete 2-loop 0 1-loop 0 0iwasaki (Alpha’ 92, 96,00) (Takeda’ 04) Set up (Only these was not given by non-PT.) Boundary O(a) improved coeffcient ct.

Running coupling (SF scheme) non perturbative result (Nf=2 dynamical) (Alpha’05) Running coupling 測 定点 Calculate in weak coupling point and strong coupling point We calculated running coupling In Weak and strong coupling region.

Preliminary Continuum extrapolation of running coupling ● weak coupling plaquete action と Iwasaki action で、結果は一致した。 Iwasaki action と Plaquete action (Alpha’ 04) との結果の比較 a/L ∑(u, a/L) Weak coupling (u=0.9793) Iwasaki : β~6 plaquete: β~9 Iwasaki action ;1-loop Plaquete action Iwasaki action ; tree Weak coupling

Continuum extrapolation of running coupling ● weak coupling Result from Iwasaki action is consistent with that from plaquete action. a/L Weak coupling (u=0.9793) Iwasaki : β~6 plaquete: β~9 Iwasaki action ;1-loop Plaquete action Iwasaki action ; tree Weak coupling Compare Iwasaki action with Plaquete action (Alpha’ 04) weak coupling region

Long auto correlation (by unsemble of “semi-stable”) in strong coupling region (and large Lattice size) is reported by alpha. Plaquete gauge action ( quenched ) Destribution of 1/g number strong coupling region

Number strong coupling: L=16^4 Beta= Kappa= In the case of Iwasaki action, We didn’t find long auto-correlation. Dstribution of 631 traj Ex) Distribution looks reasonable. strong coupling region

Continuum extrapolation of running coupling Compare Iwasaki action with Plaquete action (Alpha’ 04) scaling violation is large a/L ∑(u, a/L) Strong coupling (u=3.3340) Iwasaki: β~2 plaquete: β~5 Iwasaki action ;1-loop Plaquete action Coupling boundary Why ? In Iwasaki : small Bare coupling may be too big to calculate perturbatively Strong coupling strong coupling region

Scaling of Iwasaki action ( quenched) Strong point Scaling (quenched)( 予 備 ) It seems be able to extrapolate.(?) one-loop tree Nucl.Phys.Proc.Suppl.129: ,2004 S.Takeda, S.Aoki, K.Ide Choice B one-loop Choice A (same with one we used) Tree ct is better than PT one.

We calculated that with tree again (8)6(12)8(16) (8)6(12)8(16) : tree Another set up is same with before one.

a/L Strong coupling a/L Plaquete action Iwasaki action ;1-loop Iwasaki action ; tree Weak coupling (u=0.9793) Iwasaki : β~6 plaquete: β~9 Strong coupling (u=3.3340) Iwasaki: β~2 plaquete: β~5 conclusiton

Number strong coupling: L=16^4 Beta= Kappa= As before, We didn’t find long auto-correlation in Iwasaki action. Dstribution of traj Ex)

Strong coupling Plaquete action Iwasaki action ;1-loop Iwasaki action ; tree a/L Weak coupling (u=0.9793) Iwasaki : β~6 plaquete: β~9 weak coupling regime The result remains consistent with one from plaquette action.

a/L Strong coupling Strong coupling (u=3.3340) Iwasaki: β~2 plaquete: β~5 Plaquete action Iwasaki action ;1-loop Iwasaki action ; tree O(a) behavior become very good and we got result consistent with result from plaquete action. Large scaling violation in the case of 1-loop ct is much Improved by tree ct. strong coupling region

Tree impposible ct conclusion Purpose calculate SF running coupling in Weak and strong with Iwasaki action And compare result with earlier study. result まとめ ( in SF scheme) Beta function behave differently from perturbative expectation in strong coupling regime. We confirmed that the result is consistent each other within error bar.

● Plaquete action には 一次相転移がある ● Iwasaki action では 相転移が弱められている hep-lat:/ Nf=3 (clover) Iwasaki action Plaquete action 一次相転移 ( 予備 )

Scaling of Iwasaki action ( quenched) (Takeda’04) Weak point Strong point Scaling (quenched)( 予 備 )

Nf=2 Step Scaling Function Nf=2 data (予備)