Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.

Slides:



Advertisements
Similar presentations
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Advertisements

Web: Contact: HAWC is a collaborative effort between institutions in the United States of America.
High-energy particle acceleration in the shell of a supernova remnant F.A. Aharonian et al (the HESS Collaboration) Nature 432, 75 (2004) Nuclear Physics.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University TeV Neutrinos and Gamma rays from Pulsars/Magnetars.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
Surveying the Galactic Plane with VERITAS and GLAST Amanda Weinstein, UCLA Getting Involved with GLAST workshop May 22, 2007 UCLA.
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Alexander Kappes Forschungsseminar Institut für Physik, Humboldt-Universität Berlin, 11. February 2011 Fishing for Neutrinos in the Mediterranean Sea –
Sabrina Casanova Max Planck Institut fuer Kernphysik, Heidelberg TeV Diffuse Galactic Gamma-Ray Emission.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Nebular Astrophysics.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
Outline: Introduction into the problem Status of the identifications Summary Identification of Very high energy gamma-ray sources.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Molecular clouds and gamma rays
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
CTA Cherenkov Telescope Array CTA Josep-M.Paredes & Massimo Persic for CTA Consortium Vulcano, May 30, 2009.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Gisela Anton LAUNCH 09 Heidelberg, November 10 th, 2009 High Energy Neutrino Astronomy.
KM3NeT ‑ The Next Generation Neutrino Telescope Alexander Kappes IceCube Particle Astrophysics Symposium Union South, Madison, May 13, 2013.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Alexander Kappes HEAP’09 KEK, 11. November 2009 Neutrino Astronomy – Status and Perspectives.
HAWC Science  Survey of 2  sr (half the sky) up to 100 TeV energies Probe knee in cosmic ray spectrum Identify sources of Galactic cosmic rays  Extended.
PHY418 Particle Astrophysics
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
The Gamma-Neutrino Connection in Transparent Sources – the Observational Side Alexander Kappes University Wisconsin-Madison Workshop on Non-Thermal Hadronic.
Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 3-9 August 2014ANTARES diffuse flux.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Astroparticle Physics (3/3)
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
The end of the electromagnetic spectrum
“VERITAS Science Highlights” VERITAS: TeV Astroparticle Physics Array of four 12-m Cherenkov telescopes Unprecedented sensitivity: ~100 GeV to ~30 TeV.
CEA Saclay – Institute of research into the fundamental laws of the Universe KM3NeT Physics case Th. Stolarczyk CEA Irfu SSC open session meeting March.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
Large Area Telescopes Cosmic Rays – Gamma Rays – Neutrinos P.Kooijman.
Observation of Pulsars and Plerions with MAGIC
Astronomy session: a summary
Lecture 4 The TeV Sky Cherenkov light Sources of Cherenkov radiation.
discovery potential of Galactic sources
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Alexander Kappes Francis Halzen Aongus O’Murchadha
Particle Acceleration in the Universe
Presentation transcript:

Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources

Alexander Kappes, XIV Lomonosov Conference, Moscow, Outline Introduction to neutrino astronomy Potential Galactic neutrino sources Expected fluxes and event rates The mystery of the missing PeVatrons Prospects for detection of Galactic neutrino sources

Alexander Kappes, XIV Lomonosov Conference, Moscow, λ The Milkyway in different light Radio Continuum2.4–2.7 GHz Bonn & Parkes Infrared12, 16, 100 μm IRAS Near Infrared1.25, 2.2, 3.5 μm COBE/DIRBE OpticalLaustsen et al. Photomosaic X-Ray0.25, 0.75, 1.5 keV ROSAT/PSPC Gamma Ray> 100 MeV CGRO/EGRET TeV Gamma Ray> 100 GeV H.E.S.S. 1930’s 1960’s Microwave2.6 mm CfA ?? ? TeV Neutrinos Neutrino Telescopes

Alexander Kappes, XIV Lomonosov Conference, Moscow, Cosmic ray spectrum energy (eV) Flux (GeV -1 m -2 s -1 sr -1 ) LHC extra- Galactic Spectrum measured over 12 orders of magnitude in energy Power law spectrum (non thermal) Consists of particles Sources still active Sources still unknown ! Cosmic-rays Galactic “knee”

Alexander Kappes, XIV Lomonosov Conference, Moscow, Accelerator (source) Shock fronts (Fermi acceleration) Objects with strong magnetic fields (pulsars, magnetars) Beam dump (secondary particle production) Interaction with photon and matter near the source Protons: pion decay Electrons: inverse Compton-scattering of photons e + γ → e + γ (TeV) High-energy particle production p + p(γ) → π ± + X μ + ν μ e + ν μ + ν e p + p(γ) → π 0 + X γ + γ (TeV)

Alexander Kappes, XIV Lomonosov Conference, Moscow, Potential Galactic neutrino sources H.E.S.S. Galactic plane scan Classes of TeV γ -ray sources: 8 SNRs 12 PWNe 4 Binaries 4 Others 20 Unidentified

Alexander Kappes, XIV Lomonosov Conference, Moscow, Source candidates star-forming regions (Cygnus region, optical) pulsars (Crab pulsar, optical, X-ray) supernova remnants (SN1006, optical, radio, X-ray) micro-quasars (artist’s view)

Alexander Kappes, XIV Lomonosov Conference, Moscow, Fermi acceleration: energy gain after each crossing of shock front repetitive process yields power law SNR: RX J1713.7–3946 interstellar gas shock front shocked gas rest system interstellar gas rest system shocked gas Age ~1000 years Moon 1.3˚

Alexander Kappes, XIV Lomonosov Conference, Moscow, RX J1713: History of neutrino rate predictions Early predictions too optimistic (wrong γ-ray measurements, no ν oscillation, no cut-offs) Now expecting (1 km 3, E ν > 1 TeV): 1 – 3 evt yr -1 Source size important: ∅ = 1.3˚ → N bkg ≈ 8 Alvarez-Muniz & Halzen (2002) Costantini & Vissani (2005) Distefano (2006) Kistler & Beacom (2006) Kappes et al. (2007) Morlino et al. (2009) RX J1713–3946 PSF ν telescopes (> 10 TeV)

Alexander Kappes, XIV Lomonosov Conference, Moscow, RX J1713: Impact of High Energy Cut-Offs Effective area increases rapidly with energy → high energy cut-offs have large impact on event rates E ν > 1 TeV: 2.1 evt yr -1 (cut-off) → 3.6 evt yr -1 (no cut-off) Integrated event rate in 1 km 3 detector

Alexander Kappes, XIV Lomonosov Conference, Moscow, Binary Systems 3.9 d period HESS γ-ray spectra (2006) Potentially large γ-ray absorption → Neutrino flux much higher than expected LS 5039: -Evts in km 3 detector (> 1 TeV) (Kappes et al. (2007)) INFC:0.3 – 0.7 yr -1 SUPC: 0.1 – 0.3 yr -1 -Up to 100 times higher ! (Aharonian et al. (2006)) -Point-like source ( ∅ ≈ 0.1˚) SUPC INFC LS 5039 Inferior conjunction Superior conjunction

Alexander Kappes, XIV Lomonosov Conference, Moscow, PWNe generally expected to accelerate electrons... but maybe significant fraction of nuclei in pulsar wind !? (e.g. Horn et al. (2006)) Example Vela X: 1 – 5 evts yr -1 (km 3 ; > 1 TeV) (Kistler & Beacom (2006), Kappes et al. (2007)) Pulsar wind nebulae Vela X (H.E.S.S.) ~1 o Blondin et al. (2001) PWN simulation

Alexander Kappes, XIV Lomonosov Conference, Moscow, Molecular clouds Interaction of cosmic rays with molecular clouds TeV γ-ray emission follows matter density Galactic Centre region: garantied neutrino source but rather weak (< 1 evt yr -1 ) Galactic Centre region (HESS, 2006) Galactic Long. (deg) Galactic Lat. (deg) Galactic Centre

Alexander Kappes, XIV Lomonosov Conference, Moscow, The missing PeVatrons No γ rays above few 10 TeV (“knee” corresponds to ~300 TeV) “Direct” γ-rays maybe only in first few hundred years Detection by observing secondary ν’s or γ-rays from clouds near sources Gabici & Aharonian, arXiv: yr 2000 yr 8000 yr yr at 1 kpc 2000 yr Cherenkov telescopes (e.g. HESS, Magic, Veritas) Air shower arrays (Milagro) (10 4 solar masses) 8000 yr 10 TeV

Alexander Kappes, XIV Lomonosov Conference, Moscow, PeVatron candidates 5 years MGRO J C2 MGRO J J MGRO J C1 10 years 5 years Halzen et al. (2008) Significance Part of Galactic plane in 12 TeV (Milagro) IceCube If PeVatrons, sources detectable with IceCube Energy resolution important Analysis with stacked sources

Alexander Kappes, XIV Lomonosov Conference, Moscow, Sky coverage of neutrino telescopes TeV γ-ray sources Galactic extra-Galactic Visibility Mediterranean (Antares, KM3NeT) > 75% 25% – 75% < 25% Visibility South Pole (IceCube) 100% 0%

Alexander Kappes, XIV Lomonosov Conference, Moscow, Point-source sensitivities ANTARES: 1 yr (pred. sensitivity) Predicted fluxes Halzen, AK, O’Murchadha, PRD (2008) AK, Hinton, Stegmann, Aharonian, ApJ (2006) Kistler, Beacom, PRD (2006) Costantini & Vissani, App (2005)... KM3NeT: 1 yr (pred. sensitivity) 90% CL sensitivity for E -2 spectra (preliminary) KM3NeT (not final detector) Detectability of individual sources depends on many details: Cut-off energy Source size Energy resolution (Lower energy cuts improves Signal/Bckg ratio) IceCube: 1 yr (pred. sensitivity) ANTARES IceCube

Alexander Kappes, XIV Lomonosov Conference, Moscow, Gamma-ray dark sources Neutrinos open a new window to the universe... ν ν ν ν ν

Alexander Kappes, XIV Lomonosov Conference, Moscow, Conclusions Neutrino telescopes open new window to our galaxy and beyond (complete picture requires multi-messenger approach) Galactic high-energy neutrino sources must exist but up to now no source of high-energy neutrino emission identified km 3 -class detectors (IceCube, KM3NeT) will enter discovery region -several good source candidates -will likely detect cosmic neutrinos within next years -detection significance depends on source-specific details Expect surprises !