StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University

Slides:



Advertisements
Similar presentations
Panel at 2013 Joint Mathematics Meetings
Advertisements

StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock St. Lawrence University USCOTS Breakout – May 2013 Patti Frazer Lock.
What Can We Do When Conditions Arent Met? Robin H. Lock, Burry Professor of Statistics St. Lawrence University BAPS at 2012 JSM San Diego, August 2012.
Statistical Inference Using Scrambles and Bootstraps Robin Lock Burry Professor of Statistics St. Lawrence University MAA Allegheny Mountain 2014 Section.
What Can We Do When Conditions Aren’t Met? Robin H. Lock, Burry Professor of Statistics St. Lawrence University BAPS at 2014 JSM Boston, August 2014.
Bootstraps and Scrambles: Letting Data Speak for Themselves Robin H. Lock Burry Professor of Statistics St. Lawrence University Science.
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock Morgan, Lock, and Lock MAA Minicourse –
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock, Lock, and Lock MAA Minicourse – Joint Mathematics.
Simulating with StatKey Kari Lock Morgan Department of Statistical Science Duke University Joint Mathematical Meetings, San Diego 1/11/13.
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Statistics: Unlocking the Power of Data Lock 5 STAT 101 Dr. Kari Lock Morgan 10/23/12 Sections , Single Proportion, p Distribution (6.1)
Hypothesis Testing: Intervals and Tests
Early Inference: Using Bootstraps to Introduce Confidence Intervals Robin H. Lock, Burry Professor of Statistics Patti Frazer Lock, Cummings Professor.
Hypothesis Testing I 2/8/12 More on bootstrapping Random chance
Intuitive Introduction to the Important Ideas of Inference Robin Lock – St. Lawrence University Patti Frazer Lock – St. Lawrence University Kari Lock Morgan.
Models and Modeling in Introductory Statistics Robin H. Lock Burry Professor of Statistics St. Lawrence University 2012 Joint Statistics Meetings San Diego,
A Fiddler on the Roof: Tradition vs. Modern Methods in Teaching Inference Patti Frazer Lock Robin H. Lock St. Lawrence University Joint Mathematics Meetings.
Connecting Simulation- Based Inference with Traditional Methods Kari Lock Morgan, Penn State Robin Lock, St. Lawrence University Patti Frazer Lock, St.
StatKey: Online Tools for Bootstrap Intervals and Randomization Tests Kari Lock Morgan Department of Statistical Science Duke University Joint work with.
Dr. Kari Lock Morgan Department of Statistics Penn State University Teaching the Common Core: Making Inferences and Justifying Conclusions ASA Webinar.
Starting Inference with Bootstraps and Randomizations Robin H. Lock, Burry Professor of Statistics St. Lawrence University Stat Chat Macalester College,
Using Simulation Methods to Introduce Statistical Inference Patti Frazer Lock Kari Lock Morgan Cummings Professor of Mathematics Assistant Professor of.
Building Conceptual Understanding of Statistical Inference with Lock 5 Dr. Kari Lock Morgan Department of Statistical Science Duke University Wake Forest.
Bootstrapping: Let Your Data Be Your Guide Robin H. Lock Burry Professor of Statistics St. Lawrence University MAA Seaway Section Meeting Hamilton College,
Introducing Inference with Simulation Methods; Implementation at Duke University Kari Lock Morgan Department of Statistical Science, Duke University
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Using Bootstrap Intervals and Randomization Tests to Enhance Conceptual Understanding in Introductory Statistics Kari Lock Morgan Department of Statistical.
Statistics: Unlocking the Power of Data Lock 5 Inference for Proportions STAT 250 Dr. Kari Lock Morgan Chapter 6.1, 6.2, 6.3, 6.7, 6.8, 6.9 Formulas for.
Introducing Inference with Bootstrap and Randomization Procedures Dennis Lock Statistics Education Meeting October 30,
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University
More Randomization Distributions, Connections
Understanding the P-value… Really! Kari Lock Morgan Department of Statistical Science, Duke University with Robin Lock, Patti Frazer.
Using Simulation Methods to Introduce Inference Kari Lock Morgan Duke University In collaboration with Robin Lock, Patti Frazer Lock, Eric Lock, Dennis.
Statistics: Unlocking the Power of Data Lock 5 Normal Distribution STAT 250 Dr. Kari Lock Morgan Chapter 5 Normal distribution Central limit theorem Normal.
Statistics: Unlocking the Power of Data Lock 5 Synthesis STAT 250 Dr. Kari Lock Morgan SECTIONS 4.4, 4.5 Connecting bootstrapping and randomization (4.4)
Using Lock5 Statistics: Unlocking the Power of Data
What Can We Do When Conditions Aren’t Met? Robin H. Lock, Burry Professor of Statistics St. Lawrence University BAPS at 2011 JSM Miami Beach, August 2011.
How to Handle Intervals in a Simulation-Based Curriculum? Robin Lock Burry Professor of Statistics St. Lawrence University 2015 Joint Statistics Meetings.
Statistics: Unlocking the Power of Data Lock 5 Afternoon Session Using Lock5 Statistics: Unlocking the Power of Data Patti Frazer Lock University of Kentucky.
Estimation: Sampling Distribution
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University
Statistics: Unlocking the Power of Data Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University University of Kentucky.
Statistics: Unlocking the Power of Data Lock 5 STAT 101 Dr. Kari Lock Morgan 9/18/12 Confidence Intervals: Bootstrap Distribution SECTIONS 3.3, 3.4 Bootstrap.
Introducing Inference with Simulation Methods; Implementation at Duke University Kari Lock Morgan Department of Statistical Science, Duke University
Statistics: Unlocking the Power of Data Lock 5 Normal Distribution STAT 101 Dr. Kari Lock Morgan 10/18/12 Chapter 5 Normal distribution Central limit theorem.
Using Randomization Methods to Build Conceptual Understanding of Statistical Inference: Day 2 Lock, Lock, Lock Morgan, Lock, and Lock MAA Minicourse- Joint.
Robin Lock St. Lawrence University USCOTS Opening Session.
StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University
Confidence Intervals: Bootstrap Distribution
Introducing Inference with Bootstrapping and Randomization Kari Lock Morgan Department of Statistical Science, Duke University with.
Implementing a Randomization-Based Curriculum for Introductory Statistics Robin H. Lock, Burry Professor of Statistics St. Lawrence University Breakout.
Statistics: Unlocking the Power of Data Lock 5 Bootstrap Intervals Dr. Kari Lock Morgan PSU /12/14.
Building Conceptual Understanding of Statistical Inference Patti Frazer Lock Cummings Professor of Mathematics St. Lawrence University Canton, New York.
Using Bootstrapping and Randomization to Introduce Statistical Inference Robin H. Lock, Burry Professor of Statistics Patti Frazer Lock, Cummings Professor.
Give your data the boot: What is bootstrapping? and Why does it matter? Patti Frazer Lock and Robin H. Lock St. Lawrence University MAA Seaway Section.
Statistics: Unlocking the Power of Data Lock 5 Inference for Means STAT 250 Dr. Kari Lock Morgan Sections 6.4, 6.5, 6.6, 6.10, 6.11, 6.12, 6.13 t-distribution.
Statistics: Unlocking the Power of Data Lock 5 Section 4.5 Confidence Intervals and Hypothesis Tests.
Constructing Bootstrap Confidence Intervals
Statistics: Unlocking the Power of Data Lock 5 Normal Distribution STAT 250 Dr. Kari Lock Morgan Chapter 5 Normal distribution (5.1) Central limit theorem.
Ch 6 Introduction to Formal Statistical Inference.
Chapter 12 Inference for Proportions AP Statistics 12.2 – Comparing Two Population Proportions.
Bootstraps and Scrambles: Letting a Dataset Speak for Itself Robin H. Lock Patti Frazer Lock ‘75 Burry Professor of Statistics Cummings Professor of MathematicsSt.
Using Randomization Methods to Build Conceptual Understanding in Statistical Inference: Day 1 Lock, Lock, Lock, Lock, and Lock Minicourse – Joint Mathematics.
Patti Frazer Lock Cummings Professor of Mathematics
Connecting Intuitive Simulation-Based Inference to Traditional Methods
Improving Conceptual Understanding in Intro Stats
Improving Conceptual Understanding in Intro Stats
Chapter 12 Inference for Proportions
Teaching with Simulation-Based Inference, for Beginners
Randomization Tests - Beyond One/Two Sample Means & Proportions
Presentation transcript:

StatKey Online Tools for Teaching a Modern Introductory Statistics Course Robin Lock Burry Professor of Statistics St. Lawrence University Wiley Faculty Network - March 11, 2013

What is it? Freely available at Runs in (almost) any browser. Also available as a Google Chrome App. A set of web-based, interactive, dynamic statistics tools designed for teaching simulation-based methods such as bootstrap intervals and randomization tests at an introductory level. StatKey

Who Developed StatKey? The Lock 5 author team to support a new text: Statistics: Unlocking the Power of Data Robin & Patti St. Lawrence Dennis Iowa State Eric UNC/Duke Kari Harvard/Duke Wiley (2013)

WHY? Address instructor concerns about accessibility of simulation-based methods at the intro level Design an easy-to-use set of learning tools Provide a no-cost technology option for any environment OR as a supplement to existing technology Support our new textbook, while also being usable with other texts or on its own StatKey

Programming Team Rich Sharp Stanford Ed Harcourt St. Lawrence Kevin Angstadt St. Lawrence StatKey is programmed in JavaScript StatKey

Let’s try it out! StatKey

Sampling Distribution Look at many samples from the population to see how a statistic varies from sample to sample. BUT, in most real situations... WE ONLY HAVE ONE SAMPLE! BOOTSTRAP ! Key idea: To simulate a sampling distribution, we take many samples with replacement from the original sample using the same n.

Why does the bootstrap work?

Sampling Distribution Population µ BUT, in practice we don’t see the “tree” or all of the “seeds” – we only have ONE seed

Bootstrap Distribution Bootstrap “Population” What can we do with just one seed? Grow a NEW tree! µ

Golden Rule of Bootstraps The bootstrap statistics are to the original statistic as the original statistic is to the population parameter.

According to a CNN poll of n=722 likely voters in Ohio: 368 choose Obama (51%) 339 choose Romney (47%) 15 choose otherwise (2%) Find a 95% confidence interval for the proportion of Obama supporters in Ohio.

Example: Pulse Rate by Athlete? Find a 95% CI for the difference in mean pulse rate between students who are not athletes and those who are.

Beer and Mosquitoes Does consuming beer attract mosquitoes? Experiment: 25 volunteers drank a liter of beer, 18 volunteers drank a liter of water Randomly assigned! Mosquitoes were caught in traps as they approached the volunteers. 1 1 Lefvre, T., et. al., “Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes, ” PLoS ONE, 2010; 5(3): e9546. Beer mean = 23.6 Water mean = H 0 : μ B =μ W H 0 : μ B >μ W

Traditional Inference 1. Which formula? 2. Calculate numbers and plug into formula 3. Which theoretical distribution? 4. Find p-value < p-value < 0.001

StatKey Give it a try! Send comments and feedback