Simple Harmonic Motion

Slides:



Advertisements
Similar presentations
Kinematics of simple harmonic motion (SHM)
Advertisements

Horizontal Spring-Block Oscillators
Simple Harmonic Motion
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion Lecturer: Professor Stephen T. Thornton
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound a) Simple Harmonic Motion (SHM)
Oscillation.
Oscillations © 2014 Pearson Education, Inc. Periodic Motion Periodic motion is that motion in which a body moves back and forth over a fixed path, returning.
Oscillations Phys101 Lectures 28, 29 Key points:
Physics: Principles with Applications, 6th edition
Simple Harmonic Motion
NAZARIN B. NORDIN What you will learn: Load transfer, linear retardation/ acceleration Radius of gyration Moment of inertia Simple.
Harmonic Motion and Waves Chapter 14. Hooke’s Law If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount.
Simple Harmonic Motion
Simple Harmonic Motion
Vibrations and Waves AP Physics Lecture Notes m Vibrations and Waves.
Chapter 11 - Simple Harmonic Motion
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Periodic Motion. Definition of Terms Periodic Motion: Motion that repeats itself in a regular pattern. Periodic Motion: Motion that repeats itself in.
Oscillations - SHM. Oscillations In general an oscillation is simply aback and forth motion Since the motion repeats itself, it is called periodic We.
Simple Harmonic Motion
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
When a weight is added to a spring and stretched, the released spring will follow a back and forth motion.
Chapter 11 Vibrations and Waves.
1 P1X: Optics, Waves and Lasers Lectures, Lecture 2: Introduction to wave theory (II) Phase velocity: is the same as speed of wave: o Phase velocity:
Simple Harmonic Motion
Simple Harmonic Motion
Chapter 11 Vibrations and Waves.
SIMPLE HARMONIC MOTION. STARTER MAKE A LIST OF OBJECTS THAT EXPERIENCE VIBRATIONS:
Periodic Motions.
Chapter 11: Harmonic Motion
Simple Harmonic Motion. Periodic Motion When a vibration or oscillation repeats itself over the same time period.
Chapter 12 Vibrations and Waves. Periodic Motion Any repeated motion Examples?
Phys 250 Ch14 p1 Chapter 13: Periodic Motion What we already know: Elastic Potential Energy energy stored in a stretched/compressed spring Force: Hooke’s.
Vibrations and Waves Chapter 11. Most object oscillate (vibrate) because solids are elastic and they will vibrate when given an impulse Tuning forks,
Chapter 11 Vibrations and Waves. Simple harmonic motion Measuring simple harmonic motion Properties of waves Wave interactions.
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
Chapter 16 Vibrations Motion. Vibrations/Oscillations Object at the end of a spring Object at the end of a spring Tuning fork Tuning fork Pendulum Pendulum.
Chapter 14 Springs A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the mat.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Simple Harmonic Motion (SHM). Simple Harmonic Motion – Vibration about an equilibrium position in which a restoring force is proportional to displacement.
Simple Harmonic Motion Wenny Maulina Simple harmonic motion  Simple harmonic motion (SHM) Solution: What is SHM? A simple harmonic motion is the motion.
Chapter 10 Waves and Vibrations Simple Harmonic Motion SHM.
Chapter 14 – Vibrations and Waves. Every swing follows the same path This action is an example of vibrational motion vibrational motion - mechanical oscillations.
Oscillations © 2014 Pearson Education, Inc..
Simple Harmonic Motion
Simple Harmonic Motion
Unit D: Oscillatory Motion & Mechanical Waves
AP Physics Lecture Notes
Periodic Motion Oscillations: Stable Equilibrium: U  ½kx2 F  kx
Oscillations An Introduction.
Unit 4: Oscillatory Motion and Mechanical Waves
PHYS 1441 – Section 004 Lecture #22
BTE 1013 ENGINEERING SCIENCES
Chapter 14: Simple Harmonic Motion
Chapter 14: Simple Harmonic Motion
Simple Harmonic Motion Lesson 2
Periodic Motion Oscillations: Stable Equilibrium: U  ½kx2 F  -kx
Hooke’s Law Period of oscillators
Hooke’s Law Period of oscillators
Ch. 12 Waves pgs
Simple Harmonic Motion and Wave Interactions
Presentation transcript:

Simple Harmonic Motion 14.2 Simple Harmonic motion (SHM) 14-3 Energy in the Simple Harmonic Oscillator 14-5 The Simple Pendulum 14-6 The Physical Pendulum and the Torsional Pendulum LAB Quiz will be in Class the last day of classes (Dec. 7)

14-1 Oscillations of a Spring Example 14-1: Car springs. When a family of four with a total mass of 200 kg step into their 1200-kg car, the car’s springs compress 3.0 cm. (a) What is the spring constant of the car’s springs, assuming they act as a single spring? (b) How far will the car lower if loaded with 300 kg rather than 200 kg? Figure 14-4. Caption: Photo of a car’s spring. (Also visible is the shock absorber, in blue—see Section 14–7.) Solution: a. k = F/x = 6.5 x 104 N/m. b. x = F/k = 4.5 cm

Problem 2 2. (I) An elastic cord is 65 cm long when a weight of 75 N hangs from it but is 85 cm long when a weight of 180 N hangs from it. What is the “spring” constant k of this elastic cord?

Problem 4 (I) (a) What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8 cm from equilibrium and then released from rest, and whose period is 0.66 s? (b) What will be its displacement after 1.8 s?

14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a useful model for a periodic system. Figure 14-1. Caption: A mass oscillating at the end of a uniform spring.

14-1 Oscillations of a Spring We assume that the surface is frictionless. There is a point where the spring is neither stretched nor compressed: this is the equilibrium position. We measure displacement from that point (x = 0 on the previous figure). The force exerted by the spring depends on the displacement:

14-1 Oscillations of a Spring The minus sign on the force indicates that it is a restoring force—it is directed to restore the mass to its equilibrium position. k is the spring constant. The force is not constant, so the acceleration is not constant either.

14-1 Spring-restoring force X=0 x=-A x=A Restoring Force At x=-A At x=A x=A X=0 x=-A F x Restoring Force = -kx amax occurs when x=A X=0 x=-A x=A F m x

14-1 Oscillations of a Spring Displacement is measured from the equilibrium point. Amplitude is the maximum displacement. A cycle is a full to-and-fro motion. Period is the time required to complete one cycle. Frequency is the number of cycles completed per second. Figure 14-2. Caption: Force on, and velocity of, a mass at different positions of its oscillation cycle on a frictionless surface.

spring-sine wave Equilibrium A x= x= A x= max v= v= v= max a= a= max max x= v= a= A max x= v= a= A max

14-1 Oscillations of a Spring If the spring is hung vertically, the only change is in the equilibrium position, which is at the point where the spring force equals the gravitational force. Figure 14-3. Caption: (a) Free spring, hung vertically. (b) Mass m attached to spring in new equilibrium position, which occurs when ΣF = 0 = mg – kx0. Has the same Period and frequency as if it were horizontal

14-2 Simple Harmonic Motion Example 14-2: Car springs again. Determine the period and frequency of a car whose mass is 1400 kg and whose shock absorbers have a spring constant of 6.5 x 104 N/m after hitting a bump. Assume the shock absorbers are poor, so the car really oscillates up and down. Solution: Substitution gives T = 0.92 s and f = 1.09 Hz.

Problem 3 3. (I) The springs of a 1500-kg car compress 5.0 mm when its 68-kg driver gets into the driver’s seat. If the car goes over a bump, what will be the frequency of oscillations? Ignore damping.

14-2 Simple Harmonic Motion Example 14-4: Loudspeaker. The cone of a loudspeaker oscillates in SHM at a frequency of 262 Hz (“middle C”). The amplitude at the center of the cone is A = 1.5 x 10-4 m, and at t = 0, x = A. (a) What equation describes the motion of the center of the cone? (b) What are the velocity and acceleration as a function of time? (c) What is the position of the cone at t = 1.00 ms (= 1.00 x 10-3 s)? Figure 14-9. Caption: Example 14-4. A loudspeaker cone. Solution: a. The angular frequency is 1650 rad/s, so x = (1.5 x 10-4m)cos(1650t). b. The maximum velocity is 0.25 m/s, so v = -(0.25 m/s)sin(1650t). The maximum acceleration is 410 m/s2, so a = -(410 m/s2)cos(1650t). c. At t = 1 ms, x = -1.2 x 10-5 m.

14-2 Simple Harmonic Motion Any vibrating system where the restoring force is proportional to the negative of the displacement is in simple harmonic motion (SHM), and is often called a simple harmonic oscillator (SHO). Substituting F = kx into Newton’s second law gives the equation of motion: with solutions of the form:

14-2 Simple Harmonic Motion Substituting, we verify that this solution does indeed satisfy the equation of motion, with: The constants A and φ will be determined by initial conditions; A is the amplitude, and φ gives the phase of the motion at t = 0. Figure 14-5. Caption: Sinusoidal nature of SHM as a function of time. In this case, x = A cos (2πt/T).

14-2 Simple Harmonic Motion The velocity can be found by differentiating the displacement: These figures illustrate the effect of φ: Figure 14-6. Caption: Special case of SHM where the mass m starts, at t = 0, at the equilibrium position x = 0 and has initial velocity toward positive values of x (v > 0 at t = 0). Figure 14-7. Caption: A plot of x = A cos (ωt +φ) when φ < 0.

14-2 Simple Harmonic Motion Because then

14-2 Simple Harmonic Motion The velocity and acceleration for simple harmonic motion can be found by differentiating the displacement: Figure 14-8. Caption: Displacement, x, velocity, dx/dt, and acceleration, d2x/dt2, of a simple harmonic oscillator when φ = 0.