4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing.

Slides:



Advertisements
Similar presentations
What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
Advertisements

What is “Routing”? Routing algorithm that part of the network layer responsible for deciding on which output line to transmit an incoming packet Adaptive.
13 –Routing Protocols Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
Data Communication and Networks Lecture 11 Internet Routing Algorithms and Protocols December 5, 2002 Joseph Conron Computer Science Department New York.
10/28/ /30/2003 Network Layer, Routing, IP October 28-30, 2003.
Routing - I Important concepts: link state based routing, distance vector based routing.
Network Layer-11 CSE401N: Computer Networks Lecture-9 Network Layer & Routing.
1 Dijkstra’s Shortest Path Algorithm Gordon College.
Introduction to Networking Bin Lin TA March 3 rd, 2005 Recital 6.
Routing & IP Routing Protocols
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer The service should be independent of the router.
Katz, Stoica F04 EECS 122: Introduction to Computer Networks Link State and Distance Vector Routing Computer Science Division Department of Electrical.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
Announcement r Project 2 extended to 2/20 midnight r Project 3 available this weekend r Homework 3 available today, will put it online.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Network Layer (Routing) Shivkumar.
1 EE 122: Shortest Path Routing Ion Stoica TAs: Junda Liu, DK Moon, David Zats (Materials with thanks to Vern.
4: Network Layer4a-1 14: Intro to Routing Algorithms Last Modified: 7/12/ :17:44 AM.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.5 Routing algorithms m Link state m Distance.
Announcement r Project 2 due next week! r Homework 3 available soon, will put it online r Recitation tomorrow on Minet and project 2.
EE 122: Intra-domain routing Ion Stoica September 30, 2002 (* this presentation is based on the on-line slides of J. Kurose & K. Rose)
Routing Algorithm March 3 rd, Routing Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links  link cost:
4: Network Layer 4a-1 14: Intro to Routing Algorithms Last Modified: 8/8/ :41:16 PM.
Computer Networking Intra-Domain Routing, Part I RIP (Routing Information Protocol)
Network Layer Goals: understand principles behind network layer services: –routing (path selection) –dealing with scale –how a router works –advanced topics:
1 Week 6 Routing Concepts. 2 Network Layer Functions transport packet from sending to receiving hosts network layer protocols in every host, router path.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
Link-state routing  each node knows network topology and cost of each link  quasi-centralized: each router periodically broadcasts costs of attached.
4: Network Layer4a-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing.
IP routing. Simple Routing Table svr 4% netstat –r n Routing tables DestinationGatewayFlagsRefcntUseInterface UGH00emd UH10lo0.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
13 – Routing Algorithms Network Layer.
The Network Layer & Routing
1 Week 5 Lecture 2 IP Layer. 2 Network layer functions transport packet from sending to receiving hosts transport packet from sending to receiving hosts.
Overview of Internet Routing (I) Fall 2004 CS644 Advanced Topics in Networking Sue B. Moon Division of Computer Science Dept. of EECS KAIST.
1 Computer Networks Lecture 5: Network Layer June 2009.
Routing 1 Network Layer Network Layer goals:  understand principles behind network layer services:  routing (path selection)  how a router works  instantiation.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Internet Routing r Routing algorithms m Link state m Distance Vector m Hierarchical routing r Routing protocols m RIP m OSPF m BGP.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter4_3.
Switching, Forwarding and Routing. Network layer functions r transport packet from sending to receiving hosts r network layer protocols in every host,
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Internet and Intranet Protocols and Applications Lecture 9 Internet Routing Algorithms and Protocols March 27, 2002 Joseph Conron Computer Science Department.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer (2). Review Physical layer: move bits between physically connected stations Data link layer: move frames between physically connected stations.
T. S. Eugene Ngeugeneng at cs.rice.edu Rice University1 COMP/ELEC 429 Introduction to Computer Networks Lecture 10: Intra-domain routing Slides used with.
IP tutorial - #2 Routing KAIST Dept. of CS NC Lab.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Network Layer.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Chapter 7 Dynamic Routing
Network Layer Introduction Datagram networks IP: Internet Protocol
Routing: Distance Vector Algorithm
Distance Vector Routing: overview
Network layer functions
Chapter 4 – The Network Layer & Routing
14: Intro to Routing Algorithms
Road Map I. Introduction II. IP Protocols III. Transport Layer
Lecture 10 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
ECE453 – Introduction to Computer Networks
CS4470 Computer Networking Protocols
COMP/ELEC 429 Introduction to Computer Networks
Chapter 4: Network Layer
ECSE-4730: Computer Communication Networks (CCN)
Chapter 4: Network Layer
Chapter 4: Network Layer
Network Layer.
Chapter 4: Network Layer
EE 122: Intra-domain routing: Link State
Presentation transcript:

4: Network Layer4-1 Chapter 4: Network Layer Last time: r Chapter Goals m Understand network layer principles and Internet implementation r Started routing m Link state m Distance vector Today: r Collect HW5 r Assign HW6 m Ch 4 Prob. 1-8, due 2/25 r Hand back HW4 m Discuss r Questions on Ch1-3 and web caching paper r Ch4: Route selection m Algorithms for link state and distance vector routing methods

4: Network Layer4-2 Notes from grading HW4 r In TCP, ACKs represent bytes sent, not segments. r When giving an example of a failure in a state diagram, always start from a known good state. r Remember that bandwidths are usually expressed in bits/second, but data is in bytes. So you need to multiply by eight! r For HW4, I used probs 2,3,9,16,17 for grading, but I took off a point for each of the other problems if you didn’t try it. I marked some (but not all) of the others, so you need to check the answer sheet. Scores were not particularly good – average was a 5.4/10. r When answering True/False questions, write out True or False, not T/F

4: Network Layer4-3 Routing Graph abstraction for routing algorithms: r graph nodes are routers r graph edges are physical links m link cost: delay, $ cost, or congestion level Goal: determine “good” path (sequence of routers) thru network from source to dest. Routing protocol A E D CB F r “good” path: m typically means minimum cost path m other def’s possible

4: Network Layer4-4 Routing Algorithm classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link state” algorithms Decentralized: r router knows physically- connected neighbors, link costs to neighbors r iterative process of computation, exchange of info with neighbors r “distance vector” algorithms Static or dynamic? Static: r routes change slowly over time Dynamic: r routes change more quickly m periodic update m in response to link cost changes

4: Network Layer4-5 A Link-State Routing Algorithm Dijkstra’s algorithm r net topology, link costs known to all nodes m accomplished via “link state broadcast” m all nodes have same info r computes least cost paths from one node (‘source”) to all other nodes m gives routing table for that node r iterative: after k iterations, know least cost path to k dest.’s Notation:  c(i,j): link cost from node i to j. cost is infinite if not direct neighbors  D(v): current value of cost of path from source to dest. V  p(v): predecessor node along path from source to v, that is next to v  N: set of nodes whose least cost path is definitively known

4: Network Layer4-6 Dijsktra’s Algorithm 1 Initialization: 2 N = {A} 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(A,v) 6 else D(v) = infinity 7 8 Loop 9 find w not in N such that D(w) is a minimum 10 add w to N 11 update D(v) for all v adjacent to w and not in N: 12 D(v) = min( D(v), D(w) + c(w,v) ) 13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N

4: Network Layer4-7 Dijkstra’s algorithm: example Step start N A AD ADE ADEB ADEBC ADEBCF D(B),p(B) 2,A D(C),p(C) 5,A 4,D 3,E D(D),p(D) 1,A D(E),p(E) infinity 2,D D(F),p(F) infinity 4,E A E D CB F

4: Network Layer4-8 Dijkstra’s algorithm, discussion Algorithm complexity: n nodes r each iteration: need to check all nodes, w, not in N r n*(n+1)/2 comparisons: O(n**2) r more efficient implementations possible: O(nlogn) Oscillations possible: r e.g., link cost = amount of carried traffic A D C B 1 1+e e 0 e A D C B 2+e e 1 A D C B 0 2+e 1+e A D C B 2+e 0 e 0 1+e 1 initially … recompute routing … recompute

4: Network Layer4-9 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous: r nodes need not exchange info/iterate in lock step! distributed: r each node communicates only with directly-attached neighbors Distance Table data structure r each node has its own r row for each possible destination r column for each directly- attached neighbor to node r example: in node X, for dest. Y via neighbor Z: D (Y,Z) X distance from X to Y, via Z as next hop c(X,Z) + min {D (Y,w)} Z w = =

4: Network Layer4-10 Distance Table: example A E D CB D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination D (C,D) E c(E,D) + min {D (C,w)} D w = = 2+2 = 4 D (A,D) E c(E,D) + min {D (A,w)} D w = = 2+3 = 5 D (A,B) E c(E,B) + min {D (A,w)} B w = = 8+6 = 14 loop!

4: Network Layer4-11 Distance table gives routing table D () A B C D A1764A1764 B D5542D5542 E cost to destination via destination ABCD ABCD A,1 D,5 D,4 D,2 Outgoing link to use, cost destination Distance table Routing table

4: Network Layer4-12 Distance Vector Routing: overview Iterative, asynchronous: each local iteration caused by: r local link cost change r message from neighbor: its least cost path change from neighbor Distributed: r each node notifies neighbors only when its least cost path to any destination changes m neighbors then notify their neighbors if necessary wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any dest has changed, notify neighbors Each node:

4: Network Layer4-13 Distance Vector Algorithm: 1 Initialization: 2 for all adjacent nodes v: 3 D (*,v) = infty /* the * operator means "for all rows" */ 4 D (v,v) = c(X,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over all X's neighbors */ X X X w At all nodes, X:

4: Network Layer4-14 Distance Vector Algorithm (cont.): 8 loop 9 wait (until I see a link cost change to neighbor V 10 or until I receive update from neighbor V) if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */ 14 /* note: d could be positive or negative */ 15 for all destinations y: D (y,V) = D (y,V) + d else if (update received from V wrt destination Y) 18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min DV(Y,w) */ 20 /* call this received new value is "newval" */ 21 for the single destination y: D (Y,V) = c(X,V) + newval if we have a new min D (Y,w)for any destination Y 24 send new value of min D (Y,w) to all neighbors forever w X X X X X w w

4: Network Layer4-15 Distance Vector Algorithm: example X Z Y

4: Network Layer4-16 Distance Vector Algorithm: example X Z Y D (Y,Z) X c(X,Z) + min {D (Y,w)} w = = 7+1 = 8 Z D (Z,Y) X c(X,Y) + min {D (Z,w)} w = = 2+1 = 3 Y