Collimator Wakefields Igor Zagorodnov BDGM, DESY 25.09.06.

Slides:



Advertisements
Similar presentations
Power Losses due to Button and Reentrant BPMs Igor Zagorodnov and Dirk Lipka BD meeting, DESY.
Advertisements

Compression Scenarios for the European XFEL Charge and Bunch Length Scope Igor Zagorodnov 1st Meeting of the European XFEL Accelerator Consortium DESY,
Jonathan Smith, 1 st March, COLSIM, CERN 1 Recent Developments with ILC Collimator Wakefield Calculations Jonathan Smith (Lancaster University/Cockcroft.
Wakefield Calculations and Impedance Database Challenges for the European XFEL Project at DESY Igor Zagorodnov ICFA mini-Workshop on “Electromagnetic wake.
Wakefield Code ECHO 2(3)D
Institut Theorie Elektromagnetischer Felder Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8,
Longitudinal Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting
Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting
Z. Huang LCLS FAC April Effect of AC RW Wake on SASE - Analytical Treatment Z. Huang, G. Stupakov see SLAC-PUB-10863, to.
The Compendium of formulae of kick factor. PLACET - ESA collimation simulation. Adina Toader School of Physics and Astronomy, University of Manchester.
Intrabeam Scattering, Impedance, and Instabilities in Ultimate Storage Rings Karl Bane FLS2012 Workshop 7 March 2012.
Fermilab GDE Simulation Kickoff meeting: Information for Simulations Wakefields Roger Barlow.
KEK-SLAC ISG9 Meeting CSR Impedance From a Wiggler and the Impact on the Beam Instability in Damping Rings Tor Raubenheimer, and Juhao Wu, Gennady Stupakov.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
Impedance Calculation and Minimisation for Low Emittance Rings(LERs)
Simulation of Beam Instabilities in SPring-8 T. Nakamura JASRI / SPring-8
Friday meeting Nawin Juntong Halloween σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC]
Wakefields in XFEL undulator intersections Igor Zagorodnov Beam Dynamics Group Meeting
Electron cloud in the wigglers of ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University.
Proposal of Halo collimation system for ATF2 A.Faus-Golfe, N. Fuster-Martínez J. Resta-López (IFIC) P. Bambade, S. Liu, S. Wallon (LAL) 113/02/1417th ATF2.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Calculations of wakefields for the LHCb VeLo. Olga Zagorodnova Desy Hamburg April 8,
Beam Delivery System collimators for the International Linear Collider J. L. Fernandez-Hernando STFC/ASTeC Daresbury Lab.
1 BROOKHAVEN SCIENCE ASSOCIATES Recent Developments in Wakefield and Impedance Computation Boris Podobedov January 16, 2014.
Scaling Law of Coherent Synchrotron Radiation in a Rectangular Chamber Yunhai Cai FEL & Beam Physics Department SLAC National Accelerator Laboratory TWIICE.
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Damping Ring ImpedanceK. Bane 04/05/2007 ILC DR Impedance Group At SLAC a group has been meeting bi-weekly for ½ year to study ILC DR broad band impedance.
Collimation for the Linear Collider, Daresbury.1 Adam Mercer, German Kurevlev, Roger Barlow Simulation of Halo Collimation in BDS.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
Collimation Wakefield Simulations Carl Beard ASTeC Daresbury Laboratory.
Issues in Simulating the Effects of Wakefields Roger Barlow LET Workshop 13 th December 2007.
Impedance Budget Database Olga Zagorodnova BD meeting, DESY.
Coupler Short-Range Wakefield Kicks Karl Bane and Igor Zagorodnov Wake Fest 07, 11 December 2007 Thanks to M. Dohlus; and to Z. Li, and other participants.
Long Range Wake Potential of BPM in Undulator Section Igor Zagorodnov and Martin Dohlus Beam Dynamics Group Meeting
BEAMLINE HOM ABSORBER O. Nezhevenko, S. Nagaitsev, N. Solyak, V. Yakovlev Fermi National Laboratory December 11, 2007 Wake Fest 07 - ILC wakefield workshop.
Nigel Watson, 17 Nov 2008 ILC08/LCWS08 FNAL ILC: Beam Delivery System Collimation System Outline Comments on changes since EDR plan Nigel Watson / Birmingham.
Jonathan Smith, 27 th August 2008, Uppsala 1 Optimal Collimators for the ILC Jonathan Smith (Lancaster University/Cockcroft Institute)
Jonathan Smith, COLSIM, 4 th December, CERN 1 GdfidL Simulations of ESA Prototype Collimators Jonathan Smith (Lancaster University/Cockcroft Institute)
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, Darmstadt, Germany - URL: Technische.
Structure Wakefields and Tolerances R. Zennaro. Parameters of the CLIC structure “CLIC G” (from A. Grudiev) StructureCLIC_G Frequency: f [GHz]12 Average.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
Jonathan Smith, European LCW, 8 th January 2007, Daresbury 1 GdfidL Simulations of ESA Prototype Collimators Jonathan Smith (Lancaster University/Cockcroft.
Simulation of Wake Field Effects in High Energy Particle Beams
Impedance & Instabilities
Panel Discussion 3: Impedance Codes
Review of High Frequency Impedance
Collimator design and short range wakefields
MDI: Trapped modes and other power losses
Numerical Studies of Resistive Wall Effects
HOM power in FCC-ee cavities
Wakefield simulations for ILC cavity
Status and details of coupler kick and wake simulations
Coupler kick and wake simulations upgrade
FCC-ee: coupling impedances and collective effects
Nigel Watson (Birmingham) LAL, 16-May-2006
Igor Zagorodnov and Martin Dohlus
Overview Multi Bunch Beam Dynamics at XFEL
Agenda Lessons from TU Darmstadt New total wakes with CST 2010
Simulation of Monopole modes trapped in LHC collimator
Simulation of trapped modes in LHC collimator
Laser assisted emittance exchange to reduce the X-ray FEL size
Collimator Wakefields
Simulation of Monopole modes trapped in LHC collimator
Introduction Small-angle approximation
Igor Zagorodnov BD meeting, DESY
Impedance of Different Kicker Options
ALICE is a Lasing Investigation Co- dE
Short-Range Wakes in Elliptical Pipe Geometry
Igor Zagorodnov and Martin Dohlus
Presentation transcript:

Collimator Wakefields Igor Zagorodnov BDGM, DESY

Codes ECHO CST MS ABCI MAFIA GdfidL VORPAL PBCI Tau3P K. Yokoya, CERN-SL/90-88, 1990 F.-J.Decker et al., SLAC-PUB-7261, 1996 G.V. Stupakov, SLAC-PUB-8857, 2001 P. Tenenbaum et al, PAC’01, 2001 B. Podobedov, S. Krinsky, EPAC’06, 2006 I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006 K.L.F. Bane, I.A. Zagorodnov, SLAC-PUB , 2006 I. Zagorodnov et al, PAC‘03, 2003 and others References Used by me

Outline Round collimators –Inductive regime –Diffractive regime –Near wall wakefields –Resistive wakefields 3D collimators (rectangular, elliptical) –Diffractive regime –Inductive regime Simulation of SLAC experiments XFEL collimators –Effect of tapering and form optimization –Kick dependence on collimator length

Effect of the kick

 [mrad] a [mm]b [mm]l [mm]Q [nC]  [mm] TESLA NLC Inductive Round collimator. Inductive

Figure 2:Kick factor vs. collimator length. A round collimator (left), a square or rectangular collimator (  = 0.3 mm, right). Round collimator. Diffractive

Round collimator

Round collimator. Resistive wall wakes Analytical estimations are available. To be studied. Can the total wake be treated as the direct sum of the geometric and the resistive wakes? Numerical modeling is required. Discrepancy between analytical estimations and measurements. Transverse geometric kick for long collimator is approx. two times larger as for the short one.

3D collimators. Regimes

3D Collimators. Diffractive Regime S.Heifets and S.Kheifets, Rev Mod Phys 63,631 (1991) I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006

3D collimators. Diffractive Regime

3D collimators. Inductive Regime

ECHO GdfidL

3D collimators. Inductive Regime ECHO GdfidL

3D collimators. Inductive Regime Round: 2D vs.3D Blue-3D Green-2D accurate

3D collimators. Inductive Regime DipolarQuadrupolar I estimate that error in this numbers is about 5%

Simulations of SLAC experiment 2001

XFEL collimators. Tapering Inductive When a short bunch passes by an out- transition, a significan reduction in the wake will not happen until the tapered walls cut into the cone of radiation, i.e until

Collimator geometry optimization. Optimum d ~ 4.5mm Geometry of the “step+taper” collimator for TTF2 XFEL collimators. Tapering

d mm 10 / 20 mm 4.5 mm 3.4 mm Loss, V/pC Spread, V/pC Peak, V/pC step taper 20mm taper 20mm +step 50 (45%) 29 (67%) -82 (53%) taper 20 mm step (d=3.4mm) taper (d=4.5mm) step+taper (d=4.1mm) Geometry of the “step+taper” absorber for XFEL XFEL collimators. Tapering

Acknowledgements to K. Bane, M. Dohlus, B. Podobedov G. Stupakov, T. Weiland for helpful discussions on wakes and impedances, and to CST GmbH for letting me use CST MICROWAVE STUDIO for the meshing.