Dr. Moshe Ran- Spread Spectrum 1 טכניקות בתקשורת מרחיבת סרט (Spread Spectrum) Chapter 1c ד"ר משה רן מצגת זו תכלול כנראה דיון של הקהל, אשר יביא ליצירת פריטי.

Slides:



Advertisements
Similar presentations
Time-of-flight measurement of ion energy Tim Freegarde Dipartimento di Fisica Università di Trento Italy.
Advertisements

Spread Spectrum Chapter 7.
Spread Spectrum Chapter 7. Spread Spectrum Input is fed into a channel encoder Produces analog signal with narrow bandwidth Signal is further modulated.
Generating Random Numbers
Authors: David N.C. Tse, Ofer Zeitouni. Presented By Sai C. Chadalapaka.
Session 2: Secret key cryptography – stream ciphers – part 2.
Lecture 7: Spread Spectrum
Dr. Moshe Ran- Spread Spectrum 1 מבוא לתקשורת רחבת סרט (Introduction to Spread Spectrum) ד"ר משה רן מצגת זו תכלול כנראה דיון של הקהל, אשר יביא.
Session 2 Symmetric ciphers 1. Stream cipher definition Recall the Vernam cipher: Plaintext Ciphertext (Running) key
Dr. Moshe Ran- Spread Spectrum 1 טכניקות בתקשורת מרחיבת סרט (Spread Spectrum) Chapter 2b ד"ר משה רן מצגת זו תכלול כנראה דיון של הקהל, אשר יביא ליצירת פריטי.
Dr. Moshe Ran- Spread Spectrum 1 טכניקות בתקשורת מרחיבת סרט (Spread Spectrum) Chapter 1c ד"ר משה רן מצגת זו תכלול כנראה דיון של הקהל, אשר יביא ליצירת פריטי.
SUMS OF RANDOM VARIABLES Changfei Chen. Sums of Random Variables Let be a sequence of random variables, and let be their sum:
Chapter 6 Continuous Random Variables and Probability Distributions
טכניקות בתקשורת מרחיבת סרט (Spread Spectrum) Chapter 2a
Chapter 5 Continuous Random Variables and Probability Distributions
Review of Probability and Random Processes
II. Medium Access & Cellular Standards. TDMA/FDMA/CDMA.
Session 2: Secret key cryptography – stream ciphers – part 1.
Chapter 15 Fourier Series and Fourier Transform
Normalised Least Mean-Square Adaptive Filtering
Spread Spectrum Techniques
Review of Probability.
Chapter 4 Continuous Random Variables and Probability Distributions
Random Processes and LSI Systems What happedns when a random signal is processed by an LSI system? This is illustrated below, where x(n) and y(n) are random.
EE513 Audio Signals and Systems Statistical Pattern Classification Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Copyright © Shi Ping CUC Chapter 3 Discrete Fourier Transform Review Features in common We need a numerically computable transform, that is Discrete.
King Fahd University of Petroleum & Minerals  Electrical Engineering Department EE 578 Simulation of Wireless Systems Code Division Multiple Access Transmission.
EE 445S Real-Time Digital Signal Processing Lab Fall 2013 Lab 4 Generation of PN sequences Debarati Kundu and Andrew Mark.
1 Introduction to. 2 Contents: DEFINITION OF SPREAD SPECTRUM ( SS ) CHARACTERISTICS OF SPREAD SPECTRUM BASIC PRINCIPLES OF DIRECT SEQUENCE SPREAD SPECTRUM.
TELECOMMUNICATIONS Dr. Hugh Blanton ENTC 4307/ENTC 5307.
1 Channel Coding (II) Cyclic Codes and Convolutional Codes.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions.
Lecture 8: Spread Spectrum
Random-Number Generation Andy Wang CIS Computer Systems Performance Analysis.
1 Chapter 2 Direct-Sequence Systems Definitions and Concepts Spread-spectrum signal –A signal that has an extra modulation that expands the signal.
Session 1 Stream ciphers 1.
Spread Spectrum Modulation Dr. Teerasit Kasetkasem.
ECE 5221 Personal Communication Systems
More Digital circuits. Ripple Counter The most common counter The problem is that, because more than one output is changing at once, the signal is glichy.
1 Chapter 7. Spread Spectrum Wen-Shyang Hwang KUAS EE.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
CHAPTER 5 SIGNAL SPACE ANALYSIS
Basic Business Statistics
ECE 5233 Satellite Communications Prepared by: Dr. Ivica Kostanic Lecture 19: Multiple Access Schemes (4) (Section 6.8) Spring 2011.
Discrete-time Random Signals
Baseband Receiver Receiver Design: Demodulation Matched Filter Correlator Receiver Detection Max. Likelihood Detector Probability of Error.
Lecture 12-13: Multi-access Aliazam Abbasfar. Outline.
Code Division Multiple Access (CDMA) Transmission Technology
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions Basic Business.
1 Review of Probability and Random Processes. 2 Importance of Random Processes Random variables and processes talk about quantities and signals which.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Spread Spectrum Chapter.
教育部網路通訊人才培育先導型計畫 Wireless Communication Technologies 1 Summary Direct-sequence MPSK and Frequency-hop MFSK represent two principle categories of spread-spectrum.
Chapter 2. Signals and Linear Systems
1.  How does the computer generate observations from various distributions specified after input analysis?  There are two main components to the generation.
디지털통신 Random Process 임 민 중 동국대학교 정보통신공학과 1.
Spread spectrum modulation Chapter 9.
1 CDMA Mobile Communication & IS Spread Spectrum Priniciples Does not attempt to allocate disjoint frequency or time slot resources –Instead, this.
Chapter 6 The Normal Distribution and Other Continuous Distributions
BPSK Direct Sequence Spread Spectrum
Subject Name: Digital Communication Subject Code: 10EC61
Advanced Wireless Networks
Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband.
Spread Spectrum Chapter 7.
Random-Number Generation
CDMA Mobile Communication & IS-95
EE513 Audio Signals and Systems
Wireless Networks Fall 2007
Spread Spectrum Chapter 7.
On the Design of RAKE Receivers with Non-uniform Tap Spacing
Statistics for Managers Using Microsoft® Excel 5th Edition
Presentation transcript:

Dr. Moshe Ran- Spread Spectrum 1 טכניקות בתקשורת מרחיבת סרט (Spread Spectrum) Chapter 1c ד"ר משה רן מצגת זו תכלול כנראה דיון של הקהל, אשר יביא ליצירת פריטי פעולה. השתמש ב- PowerPoint כדי לעקוב אחר פריטי פעולה אלה במהלך המצגת. בהצגת שקופיות, לחץ באמצעות לחצן העכבר הימני. בחר באפשרות “מפקח הישיבות”. בחר בכרטיסיה “פריטי פעולה”. הקלד את פריטי הפעולה כאשר הם מופיעים. לחץ על אישור כדי להסיר תיבה זו. פעולה זו תיצור אוטומטית שקופיות לפריטי פעולה בסוף המצגת, והנקודות שהעלית יוזנו בתוכה. כל הזכויות שמורות לחברת MostlyTek Ltd. אין לצלם, לשכפל או להעתיק בכל צורה שהיא ללא קבלת אישור בכתב מד"ר משה רן

Dr. Moshe Ran / Spread Spectrum 2 נושאי לימוד פרק 1 מבוא הסטורי לטכניקות Spread Spectrum הרחבת ספקטרום – לשם מה? חזרה- מושגי יסוד ועקרונות של מערכות תקשורת ספרתיות; רעשים והפרעות במערכות תקשורת, דרישות מערכתיות על התקשורת, השוואת שיטות אפנון ספרתיות, יעילות ספקטרלית. פרק 2 מבוא למערכות מרחיבות סרט (Spread Spectrum) - : קונספט ומודלים למערכות מרחיבות סרט; שיטות הרחבת סרט המבוססות על הרחבה ישירה DS)) דילוגים בזמן TH) ) דילוגים בתדר (FH) פרק 3 סדרות קוד למערכות מרחיבות סרט - LFSR, Gold Sequence, Walsh פרק 4 ביצועים של מערכות עם הרחבת סרט ישירה (DS); ביצועים של מערכות עם דילוגי תדר (FH) ; שיטות גילוי, עקיבה וסנכרון של אותות Spread Spectrum פרק 5 קודים לתיקון שגיאות, ביצועים של מערכות Spread Spectrum עם קודים לתיקון שגיאות, אלגוריתם Viterbi פרק 6 עקרונות CDMA בתקשורת תאית פרק 7 שימושים ואפליקציות של מערכות Spread Spectrum 8 שו"ת 4 שו"ת

Dr. Moshe Ran / Spread Spectrum 3 3. Pseudo- Noise (PN) Sequence 1. Definition 2.PN Implementation 3.,, 4.,, 5.,, 6.,, 7.,, 8.,,

Dr. Moshe Ran / Spread Spectrum PN Sequence Definition A PN sequence is a deterministic sequence known to the receiver and transmitter which has features of a random sequence. -Spectrum -Correlation -Frequency of occurrence of subsequences. WHY PN and not True Random?! True random = sample of a sequence of independent r.v uniformly distributed on the alphabet True random SpSp is like one-time pad in cryptographic system. Generation, recording and distribution of “ sample random sequences ” at very high rates to provide PG is not feasible.

Dr. Moshe Ran / Spread Spectrum PN Sequence Implementation Methods implementation of a finite pseudo-noise sequence of length N or a periodic pseudo-noise sequence with a period N.  Memory of N cells. Suitable only for short sequence.  Counter with additional logic. No simple logic can be found.  Linear feedback shift register (LFSR) or equivalently Pseudo- Random Binary Sequence (PRBS ). Most useful method.

Dr. Moshe Ran / Spread Spectrum 6 PN based on Memory of N cells Example of ROM – based generator Address generator ROM 1010,1100,1011,0010. Can we replace the ROM with Boolean function?! Assume – period N=16 is desired, and the specified b n should be That is – address is 4-bits binary counter producing consecutive numbers in the range {0, …, 15}

Dr. Moshe Ran / Spread Spectrum 7 ROM based - cont. Possible b n NOTES: This mapping is a “ replacement ” function: every input a n is mapped to b n. I.E., an address-to-bit mapping – specified by a table. Need deep understanding of Finite Fields theory to design PN generators. The mapping in the example above – RM(1,m)

Dr. Moshe Ran / Spread Spectrum 8 n

Dr. Moshe Ran / Spread Spectrum 9 Counter Based PN generator This solution can be described by 4-bit counter +

Dr. Moshe Ran / Spread Spectrum 10 Complexity issues Number of operation: linear function of ~2 k (exponential in k) Are counters good for implementing PN? Probably NO. Since the sequencesdo not look “ random ”. While PN -on the average- changes every other bit The counter sequences are changing “ much slower ” Linear recursive relations are much better choice.

Dr. Moshe Ran / Spread Spectrum Linear Feedback Shift Register Configurations Fibonacci configuration Galois configuration The sequence is detemined by: Number of cells, Feedback, Initial state of the shift register. The all zero state produces a sequence with period one. The order of a sequence is the length of the shortest LFSR which may generate the sequence.

Dr. Moshe Ran / Spread Spectrum M-sequence An m- sequence or a maximal length sequence is defined as a sequence generated by a linear feedback shift register with m cells and with a period of. While generating the m-sequence, the generator passes through all possible states of the register besides the all zero state. The number of different binary m-sequence of order. Where are the prime number in the decomposition of

Dr. Moshe Ran / Spread Spectrum

Dr. Moshe Ran / Spread Spectrum Statistical Properties of Binary M-sequences a. Balance Property The number of “ ones ” in one period of the m-sequence exceeds the number of “ zeros ” by 1. b. Events counting Every times except the all zero J-tuple which occurs times. c. shift-and-Add Property The sum of the sequence and a shifted version of the sequence is another shifted version of the sequence. d. Periodic autocorrelation We refer to the sequence Is replaced by 1 and 1 is replaced by – 1. The periodic autocorrelation of is defined

Dr. Moshe Ran / Spread Spectrum 15

Dr. Moshe Ran / Spread Spectrum Statistical Properties of Random Binary Sequence a.Balance Property The probability of one equals probability of zero. b. Events counting the probability of any c. Autocorrelation we refer to the sequence I.e. 0 us replaced by 1 and 1 is replaced by – 1. The autocorrelation of a sequence is defined And is equal to

Dr. Moshe Ran / Spread Spectrum Autocorrelation of Continuous Sequence The periodic autocorrelation of the continuous waveform is defined by The continuous autocorrelation of can be obtained by connecting the discrete autocorrelation of by straight lines.

Dr. Moshe Ran / Spread Spectrum Spectrum of an M-sequence The spectrum of a continuous M-Sequence is the Fourier transform of the periodic autocorrelation of. The power spectrum of direct sequence spread spectrum signal is continuous and has deviations from the sinc form.

Dr. Moshe Ran / Spread Spectrum Selected M-sequences The reversed order sequence is called the complementary sequence and is another m-sequence. If the original sequence is generated by a LFSR of order with the taps and, the complementary sequence is generated by a LFSR of order with the taps and. tapsm (1)3 4 (2)5 (1)6 (1),(3)7 (4,3,2),(6,5,1)8 (4)9 (3)10 (2)11 (6,4,1),(7,4,3)12 (4,3,1)13 (5,3,1),(12,11,1)14 (1),(4),(7)15 (3)20 (3),(7)25

Dr. Moshe Ran / Spread Spectrum Linear Span of a Sequence The linear span of a sequence is defined as the length of the shortest LFSR which generates the sequence. If there are known consecutive bits of a sequence with a leaner span of, all the sequence can be calculated. In the binary case only known consecutive bits are required. For example, suppose that a binary sequence has a linear span of 5 and a portion of the sequence contains … … Where the sequence index is increasing from left to right. The binary sequence satisfy the linear recursion

Dr. Moshe Ran / Spread Spectrum Linear Span Of A Sequence (Cont.) … … However we know that, then The solution is

Dr. Moshe Ran / Spread Spectrum Sequence With Large Linear Span There are sequence with a period of length with a linear span larger then The most common approach to obtain a large linear span is the LFSR with feedforward logic. NON-LINEAR FUNCTION MEMORY LINEAR FUNCTION

Dr. Moshe Ran / Spread Spectrum 23 Analytical derived sequence with a large linear span are known such as: a.GMW b.Bent

Dr. Moshe Ran / Spread Spectrum Sequence for CDMA Systems In CDMA system many users share the same frequency band with different sequence with a small crosscorrelation. A popular family of sequence is the Gold sequences. In a family of Gold sequences of length there are sequences, and maximum crosscorrelation is approximately The maximum crosscorrelation is + + +

Dr. Moshe Ran / Spread Spectrum Sequences for FH/CDMA Systems In a FH/CDMA system many users share the same frequency band with different sequences with a minimal probability of hit. FREQUENCY SYNTHESIZER (one-to-one mapping) SEQUENCE SELECTOR

Dr. Moshe Ran / Spread Spectrum Aperiodic And Odd Autocorrelation The Aperiodic autocorrelation of a sequence c n with a period N is defined as Applications: where only one waveform is transmitted such as radar. The odd autocorrelation of a sequence c n with a period N is defined as The odd autocorrelation is useful in data communication where the one symbol time is equal to one period. It represent the effect of changes in data. The odd and the Aperiodic autocorrelation depend on the initial state of the sequence generator.

Dr. Moshe Ran / Spread Spectrum Best Odd Autocorrelation M- Sequences The optimization was performed over all initial states of all m- sequences of period