Vocabulary Origin & Quadrants Vertex Right, Acute, & Obtuse Complementary & Supplementary Central & Inscribed Angles Arc.

Slides:



Advertisements
Similar presentations
Angles of Rotation and Radian Measure In the last section, we looked at angles that were acute. In this section, we will look at angles of rotation whose.
Advertisements

Warm Up Find the measure of the supplement for each given angle °2. 120° °4. 95° 30°60° 45° 85°
ANGLES & RADIAN MEASURE MATH 1113 SECTION 4.1 CREATED BY LAURA RALSTON.
2.1 Angles and Their Measures
4.1 Radian and Degree Measure -Students will describe angles. -Students will use radian measure. -Students will use degree measure and convert between.
Objectives: Be able to draw an angle in standard position and find the positive and negative rotations. Be able to convert degrees into radians and radians.
Objectives: 1.Be able to draw an angle in standard position and find the positive and negative rotations. 2.Be able to convert degrees into radians and.
Radian and Degree Measure
H.Melikian/12001 Recognize and use the vocabulary of angles. Use degree measure. Use radian measure. Convert between degrees and radians. Draw angles in.
Angles and Radian Measure Section 4.1. Objectives Estimate the radian measure of an angle shown in a picture. Find a point on the unit circle given one.
Angles and Radian Measure. 4.1 – Angles and Radian Measure An angle is formed by rotating a ray around its endpoint. The original position of the ray.
Section 4.1 Angles and Radian Measure. The Vocabulary of Angles An angle is formed by two rays that have a common endpoint. One ray is called the initial.
Angles and Their Measure Section Angles Vertex Initial Side Terminal Side.
4.1 Radian and Degree Measure. Objective To use degree and radian measure.
Radians and Angles Welcome to Trigonometry!! Starring The Coterminal Angles Supp & Comp Angles The Converter And introducing… Angles Rad Radian Degree.
Section 4.1 Radian and Degree Measure. We will begin our study of precalculus by focusing on the topic of trigonometry Literal meaning of trigonometry.
TUC-1 Measurements of Angles “Things I’ve Got to Remember from the Last Two Years”
5.1 Angles and Radian Measure. ANGLES Ray – only one endpoint Angle – formed by two rays with a common endpoint Vertex – the common endpoint of an angle’s.
Radian and Degree Measure Objectives: Describe Angles Use Radian and Degree measures.
4-1.  Thinking about angles differently:  Rotating a ray to create an angle  Initial side - where we start  Terminal side - where we stop.
Angles and their Measures
Unit 1, Lesson 1 Angles and their Measures. What is an angle? Two rays with the same Endpoint.
Section 7.1 Angles and Their Measure. ANGLES An angle is formed by rotating a ray about its endpoint. The original ray is the initial side of the angle.
Advanced Algebra II Advanced Algebra II Notes 10.2 continued Angles and Their Measure.
Angles and Their Measure Section 4.1 Objectives I can label the unit circle for radian angles I can draw and angle showing correct rotation in Standard.
6.1: Angles and their measure January 5, Objectives Learn basic concepts about angles Apply degree measure to problems Apply radian measure to problems.
A3 5.1a & b Starting the Unit Circle! a)HW: p EOO b)HW: p EOE.
Trigonometric Functions
Angles.
Trigonometry Day 1 ( Covers Topics in 4.1) 5 Notecards
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Introduction to Trigonometry Angles and Radians (MA3A2): Define an understand angles measured in degrees and radians.
Angles and Their Measure.
Objectives Change from radian to degree measure, and vice versa Find angles that are co-terminal with a given angle Find the reference angle for a given.
1 Section T1- Angles and Their Measure In this section, we will study the following topics: Terminology used to describe angles Degree measure of an angle.
13.2 Angles of Rotation and Radian Measure
Radians and Degrees. What the heck is a radian? The radian is a unit of angular measure defined such that an angle of one radian subtended from the center.
Section 4.1 Angles and Their Measures Trigonometry- measurement of angles IMPORTANT VOCABULARY: Angle- determined by rotating a ray about its endpoint.
Chapter 4 Trigonometric Functions. Angles Trigonometry means measurement of triangles. In Trigonometry, an angle often represents a rotation about a point.
Radian and Degree Measure. Radian Measure A radian is the measure of a central angle that intercepts an arc length equal to the radius of the circle Radians.
Angles – An angle is determined by rotating a ray about its endpoint. Vertex Initial Side Terminal Side Terminal Side – Where the rotation of the angle.
Vertex Initial Side Terminal side Counterclockwise rotation Positive Angle.
An angle is formed by rotating an initial arm about a fixed point. Angles in Standard Position - Definitions An angle is said to be in standard position.
Radian Measure That was easy
Radians and Angles. Angle-formed by rotating a ray about its endpoint (vertex) Initial Side Starting position Terminal Side Ending position Standard Position.
1.1 Trigonometry.
Chapter 4 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
Angle Measures in Degrees & Radians Trigonometry 1.0 Students understand the notation of angle and how to measure it, in both degrees and radians. They.
Ch 14 Trigonometry!!. Ch 14 Trigonometry!! 14.1 The unit circle Circumference Arc length Central angle In Geometry, our definition of an angle was the.
Angles and their Measures Essential question – What is the vocabulary we will need for trigonometry?
 Think back to geometry and write down everything you remember about angles.
Holt McDougal Algebra Angles of Rotation Warm Up Find the measure of the supplement for each given angle. Think back to Geometry… °2. 120°
Introduction to Trigonometry Angles and Radians (MA3A2): Define an understand angles measured in degrees and radians.
Trigonometry Section 7.1 Find measures of angles and coterminal angle in degrees and radians Trigonometry means “triangle measurement”. There are two types.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
Section 4.1.  A ray is a part of a line that has only one endpoint and extends forever in the opposite direction.  An angle is formed by two rays that.
13-2 ANGLES AND THE UNIT CIRCLE FIND ANGLES IN STANDARD POSITION BY USING COORDINATES OF POINTS ON THE UNIT CIRCLE.
Angles and Their Measure Section 4.1 Objectives I can label the unit circle for radian angles I can determine what quadrant an angle is in I can draw.
Precalculus Functions & Graphs 5.1 Angles Initial Side Terminal Side Math Illustrations Link We say an angle is in whatever Quadrant the terminal side.
Chapter 7: Trigonometric Functions Section 7.1: Measurement of Angles.
Pre-Calculus Honors Pre-Calculus 4.1: Radian and Degree Measure HW: p (14, 22, 32, 36, 42)
Degrees and Radians Pre-Calculus Keeper 11.
Radian and Degree Measure
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Coterminal Angles.
Radian and Degree Measure
Lesson _______ Section 4
Angles and Their Measures
Angles and Radian Measure
13-2 Angles and Angle Measure
Presentation transcript:

Vocabulary Origin & Quadrants Vertex Right, Acute, & Obtuse Complementary & Supplementary Central & Inscribed Angles Arc

An ANGLE is created by rotating a ray about its endpoint (vertex). If we fit an angle to a coordinate system, the vertex is at the _______ and the initial side is the _________ This is called “Standard Position” Initial Side Terminal Side

These 2 angles are “COTERMINAL” Negative Angle (Clockwise) Positive Angle (Counterclockwise) (They end together)

Angles can be measured in DEGREES or in RADIANS (similar to feet & meters)

DEF: One RADIAN is the measure of a central angle  such that the arc length s is equal to the length of the radius r.  r s If s = r then  = 1 radian

arc length radius The radian measure of a central angle  = s r =

RadiansDegrees 1 full revolution? ½ a revolution? ¼ a revolution? s r =  60° 45° 30° ? 90° 180° 360° 2

Ex. What is the supplement of ? Ex. What is the complement of ? Ex. Find a coterminal angle for for