PARALLEL IMPLEMENTATIONS OF OPTIMIZING NEURAL NETWORKS 指導教授:梁廷宇 教授 姓名:紀欣呈 學號: 1095319128 系所:碩光電一甲 ANDREA DI BLAS ARUNJAGOTA RICHARD HUGHEY Baskin school.

Slides:



Advertisements
Similar presentations
-Artificial Neural Network- Chapter 2 Basic Model
Advertisements

1 A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications 指導教授 : 林志明 學生 : 黃世一
B IPARTITE I NDEX C ODING Arash Saber Tehrani Alexandros G. Dimakis Michael J. Neely Department of Electrical Engineering University of Southern California.
1 Advancing Supercomputer Performance Through Interconnection Topology Synthesis Yi Zhu, Michael Taylor, Scott B. Baden and Chung-Kuan Cheng Department.
Community Detection Algorithm and Community Quality Metric Mingming Chen & Boleslaw K. Szymanski Department of Computer Science Rensselaer Polytechnic.
ADS lab NCKU1 Michael Maire, Pablo Arbelaez, Charless Fowlkes, and Jitendra Malik university of California, Berkeley – Berkeley university of California,
A Parallel Matching Algorithm Based on Image Gray Scale Liang Zong, Yanhui Wu cso, vol. 1, pp , 2009 International Joint Conference on Computational.
Parallel random walks Brian Moffat. Outline What are random walks What are Markov chains What are cover/hitting/mixing times Speed ups for different graphs.
1 Neural networks 3. 2 Hopfield network (HN) model A Hopfield network is a form of recurrent artificial neural network invented by John Hopfield in 1982.
CSC5160 Topics in Algorithms Tutorial 2 Introduction to NP-Complete Problems Feb Jerry Le
Tracking a moving object with real-time obstacle avoidance Chung-Hao Chen, Chang Cheng, David Page, Andreas Koschan and Mongi Abidi Imaging, Robotics and.
1 高等演算法 Homework One 暨南大學資訊工程學系 黃光璿 2004/11/11. 2 Problem 1.
1 Bio-Sequence Analysis with Cradle’s 3SoC™ Software Scalable System on Chip Xiandong Meng, Vipin Chaudhary Parallel and Distributed Computing Lab Wayne.
Geographic Gossip: Efficient Aggregations for Sensor Networks Author: Alex Dimakis, Anand Sarwate, Martin Wainwright University: UC Berkeley Venue: IPSN.
A Neural Network-Based Approach for Statistical Probability Distribution Recognition 指導教授:陳茂生 教授 報告學生:周家任 d IEEM 7103 Topics in Operations Research.
The Return of the SIMD Computers: UCSC Kestrel and Beyond Andrea Di Blas School of Engineering University of California Santa Cruz.
The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.
A Local Facility Location Algorithm Supervisor: Assaf Schuster Denis Krivitski Technion – Israel Institute of Technology.
The Design and Analysis of Algorithms
-Artificial Neural Network- Chapter 3 Perceptron 朝陽科技大學 資訊管理系 李麗華教授.
Approximating the Algebraic Solution of Systems of Interval Linear Equations with Use of Neural Networks Nguyen Hoang Viet Michal Kleiber Institute of.
Cascaded Integrator Comb Filter 長庚電機通訊組 碩一 張晉銓 指導教授 : 黃文傑博士.
A Dynamic Caching Algorithm Based on Internal Popularity Distribution of Streaming Media 資料來源 : Multimedia Systems (2006) 12:135–149 DOI /s x.
電子顯微鏡學 指導教授:王聖璋 班級:碩研機械一甲 姓名:李文妤 學號:MA110113 Paper Survey J. Phys. Chem. B 2000, 104, Transmission Electron Microscopy of Shape-Controlled Nanocrystals.
Graph Coloring with Ants
Software Pipelining for Stream Programs on Resource Constrained Multi-core Architectures IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM 2012 Authors:
SoftCOM 2005: 13 th International Conference on Software, Telecommunications and Computer Networks September 15-17, 2005, Marina Frapa - Split, Croatia.
May 2004 Department of Electrical and Computer Engineering 1 ANEW GRAPH STRUCTURE FOR HARDWARE- SOFTWARE PARTITIONING OF HETEROGENEOUS SYSTEMS A NEW GRAPH.
New Modeling Techniques for the Global Routing Problem Anthony Vannelli Department of Electrical and Computer Engineering University of Waterloo Waterloo,
Computer Science and Engineering Parallel and Distributed Processing CSE 8380 March 01, 2005 Session 14.
Finding the optimal building to place a police car.
Software Defined Radio 長庚電機通訊組 碩一 張晉銓 指導教授 : 黃文傑博士.
Porting Irregular Reductions on Heterogeneous CPU-GPU Configurations Xin Huo, Vignesh T. Ravi, Gagan Agrawal Department of Computer Science and Engineering.
Short Butterfly 班級:碩研財金一甲 指導教授:張上財 學號: MA 姓名:劉芷綾.
1 A Frequency Synthesizer Using Two Different Delay Feedbacks 班級:積體所碩一 學生:林欣緯 指導教授:林志明 教授 Circuits and Systems, ISCAS IEEE International Symposium.
1 Approximate Algorithms (chap. 35) Motivation: –Many problems are NP-complete, so unlikely find efficient algorithms –Three ways to get around: If input.
Autonomic scheduling of tasks from data parallel patterns to CPU/GPU core mixes Published in: High Performance Computing and Simulation (HPCS), 2013 International.
Resource Constrained Project Scheduling Problem. Overview Resource Constrained Project Scheduling problem Job Shop scheduling problem Ant Colony Optimization.
Ultra-low-Power Smart Temperature Sensor with Subthreshold CMOS Circuits International Symposium on Intelligent Signal Processing and Communications, 2006.
1 Bus Encoding for Total Power Reduction Using a Leakage-Aware Buffer Configuration 班級:積體所碩一 學生:林欣緯 指導教授:魏凱城 老師 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION.
Zibin Zheng DR 2 : Dynamic Request Routing for Tolerating Latency Variability in Cloud Applications CLOUD 2013 Jieming Zhu, Zibin.
A Linearized Cascode CMOS Power Amplifier 指導教授:林志明 老師 研究生:林高慶 學號: Ko, Sangwon; Lin, Jenshan; Wireless and Microwave Technology Conference, 2006.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
Mohamed Hefeeda 1 School of Computing Science Simon Fraser University, Canada Efficient k-Coverage Algorithms for Wireless Sensor Networks Mohamed Hefeeda.
Linear Block Code 指導教授:黃文傑 博士 學生:吳濟廷
QCAdesigner – CUDA HPPS project
An Efficient Wireless Mesh Network A New Architecture 指導教授:許子衡 教授 學生:王志嘉.
Software Defined Radios 長庚電機通訊組 碩一 張晉銓 指導教授 : 黃文傑博士.
QoS Supported Clustered Query Processing in Large Collaboration of Heterogeneous Sensor Networks Debraj De and Lifeng Sang Ohio State University Workshop.
Maximization of System Lifetime for Data-Centric Wireless Sensor Networks 指導教授:林永松 博士 具資料集縮能力無線感測網路 系統生命週期之最大化 研究生:郭文政 國立臺灣大學資訊管理學研究所碩士論文審查 民國 95 年 7 月.
All-to-all broadcast problems on Cartesian product graphs Jen-Chun Lin 林仁俊 指導教授:郭大衛教授 國立東華大學 應用數學系碩士班.
Comparison of Tarry’s Algorithm and Awerbuch’s Algorithm CS 6/73201 Advanced Operating System Presentation by: Sanjitkumar Patel.
Software Defined Radios 長庚電機通訊組 碩一 張晉銓 指導教授 : 黃文傑博士.
姓名:謝宏偉 學號: M99G0219 班級:碩研資工一甲 201O 2nd International Conference on Education Technology and Computer ( ICETC) Neural Network Based Intelligent Analysis.
Packet Classification Using Multidimensional Cutting Sumeet Singh (UCSD) Florin Baboescu (UCSD) George Varghese (UCSD) Jia Wang (AT&T Labs-Research) Reviewed.
CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks (WWW2013) BEUTEL, ALEX, WANHONG XU, VENKATESAN GURUSWAMI, CHRISTOPHER.
指導教授:張上財 班級:碩研財金一甲 學生:郭宜欣 學號: MA Long Butterfly.
Efficient Point Coverage in Wireless Sensor Networks Jie Wang and Ning Zhong Department of Computer Science University of Massachusetts Journal of Combinatorial.
A New Recovery Method for Greedy Routing Protocols in High Mobile Vehicular Communications 指導教授:許子衡 教授 學 生:董藝興.
PREDICTION OF TYPHOON SWELLS USING NEURAL ETWORKS 蕭松山 1 丁肇隆 2 林銘崇 2 蘇昭安 3  國立台灣海洋大學河海工程學系副教授  國立台灣大學工程科學及海洋工程學系教授  國立台灣大學工程科學及海洋工程學系碩士 指導老師 : 陳榮昌 老師.
Computing and Compressive Sensing in Wireless Sensor Networks
論文寫作與發表(一) 班 級 :應碩日一A 學 號 : 姓 名 : Weng Chiu-yen 指導教授 : Kate.
Other Applications of Energy Minimzation
Possibilities and Limitations in Computation
Neural Networks for Vertex Covering
3-3 Optimization with Linear Programming
Implementation of neural gas on Cell Broadband Engine
Efficient Subgraph Similarity All-Matching
Alan Kuhnle*, Victoria G. Crawford, and My T. Thai
National Cheng Kung University
Presentation transcript:

PARALLEL IMPLEMENTATIONS OF OPTIMIZING NEURAL NETWORKS 指導教授:梁廷宇 教授 姓名:紀欣呈 學號: 系所:碩光電一甲 ANDREA DI BLAS ARUNJAGOTA RICHARD HUGHEY Baskin school of Engineering, University of California at Santa Cruz Santa Cruz, California

Outline Introduction The Optimizing Neural Network Two Parallel Implementation Flowchart Fine-grain Kestrel Implementation “SIMD Phase Programming Model” MasPar Implementation Results Conclusions

Introduction Hopfield neural network approach to the maximum clique problem, an NP-hard problem on graphs One can easily trade execution time for solution quality The neural approach does not require backtracking

THE OPTIMIZING NEURAL NETWORK

if vertices i and j are connected by an edge, otherwise. The nodes is initialized to State The input to node is Any serial update of the form:

THE OPTIMIZING NEURAL NETWORK Minimizes the network energy :. a node is picked by a random roulette-wheel selection probability

TWO PARALLEL IMPLEMENTATIONS

Call find_a_clique() NO Yes Call Normalize_bias() r to Restart Next r<Restart r=Restart Flowchart

otherwise K=0? return yes no

Fine-grain Kestrel Implementation Kestrel is a 512-PE linear SIMD array on a single PCI board for NT/Linux/OSF platforms "classic" fine-grain implementation, with one network node per PE largest graph that can be solved with the current Kestrel system has 512

“SIMD Phase Programming Model” MasPar Implementation It is a SIMD bi-dimensional array with toroidal wraparound composed of 1K, 2K, 4K, 8K or 1GK PEs The amount of local memory in this system (64KB per PE) Adaptation can also be performed locally within each PE, but global adaptation has proved better for a small number of restarts

Result KestrelMasparSerial Runs20M Hz 12.5M Hz 143M Hz PEs Ram64K per PE 256M

Result

Conclusions The MasPar SPPM implementation offers a more flexible approach because all available PEs can be active and contribute to the solution at the same time The maximum clique problem has applications in many fields, and its parallel neural implementation can extend the scale of problems that can be efficiently solved

Thank for your attention Q & A