Most slides & Paper by: Avrilia Floratou (University of Wisconsin – Madison) Jignesh M. Patel (University of Wisconsin – Madison) Eugene J. Shekita (While at IBM Almaden Research Center) Sandeep Tata (IBM Almaden Research Center) Column-Oriented Storage Techniques for MapReduce 1 Ohio State CSE WI 2012 Presentation by: David Fuhry and Karthik Tunga
Talk Outline 2 Motivation Merits/Limits of Row- & Column-store with MapReduce (recap) Lazy Tuple Construction Compression Experimental Evaluation Conclusion Dave Karthik
Motivation 3 MapReduce increasingly used for Big Data analysis Scalability, ease of use, fault tolerance, price But MapReduce implementations lack some advantages often seen in Parallel DBMS Efficiency & performance, SQL, indexing, updating, transactions This work (CIF) and RCFile both address Efficiency & performance with column-oriented storage
Motivation DatabasesMapReduce Column – Oriented Storage Performance Programmability Fault tolerance 4
Row-Store: Merits/Limits with MapReduce Row-Store: Merits/Limits with MapReduce ABCD Table HDFS Blocks Store Block 1 Store Block 2 Store Block 3 … Data loading is fast (no additional processing); All columns of a data row are located in the same HDFS block Not all columns are used (unnecessary storage bandwidth) Compression of different types may add additional overhead
HDFS Blocks Store Block 1 Store Block 2 Store Block 3 … Column-Store: Merits/Limits with MapReduce A … 6 CD …… B … Column group 1 Column group 2 Column group 3 Unnecessary I/O costs can be avoided: Only needed columns are loaded, and easy compression Additional network transfers for column grouping
Challenges 7 How to incorporate columnar–storage into an existing MR system (Hadoop) without changing its core parts? How can columnar-storage operate efficiently on top of a DFS (HDFS)? Is it easy to apply well-studied techniques from the database field to the Map-Reduce framework given that: It processes one tuple at a time. It does not use a restricted set of operators. It is used to process complex data types.
Column-Oriented Storage in Hadoop NameAgeInfo Joe23“hobbies”: {tennis} “friends”: {Ann, Nick} David32“friends”: {George} John45“hobbies”: {tennis, golf} Smith65“hobbies”: {swimming} “friends”: {Helen} 1 st node 2 nd node Eliminate unnecessary I/O NameAgeInfo Joe23“hobbies”: {tennis} “friends”: {Ann, Nick} David32“friends”: {George} NameAgeInfo John45“hobbies”:{tennis, golf} Smith65“hobbies”: {swimming} “friends”: {Helen} Name Joe David Age Info “hobbies”: {tennis} “friends”:{Ann, Nick} “friends”: {George} Name John Smith Age Info “hobbies”: {tennis, golf} “hobbies”: {swimming} “friends”: {Helen} Introduce a new InputFormat : ColumnInputFormat (CIF) 8
Replication and Co-location HDFS Replication Policy Node ANode BNode CNode D NameAgeInfo Joe23“hobbies”: {tennis} “friends”: {Ann, Nick} David32“friends”: {George} John45“hobbies”: {tennis, golf} Smith65“hobbies”: {swimming} “friends”: {Helen} Name Joe David Age Info “hobbies”: {tennis} “friends”:{Ann, Nick} “friends”: {George} Name Joe David Name Joe David Age Age Info “hobbies”: {tennis} “friends”: {Ann,Nick} “friends”: {George} Info “hobbies”: {tennis} “friends”:{Ann, Nick} “friends”: {George} CPP Introduce a new column placement policy (CPP) 9
Example AgeName Record if (age < 35) return name Joe David John Mary Ann Map Method 23Joe 32David What if age > 35? Can we avoid reading and deserializing the name field? 10
Outline Column-Oriented Storage Lazy Tuple Construction Compression Experiments Conclusions 11
Lazy Tuple Construction Deserialization of each record field is deferred to the point where it is actually accessed, i.e. when the get() methods are called. Mapper ( NullWritable key, Record value) { String name; int age = value.get(“age”); if (age < 35) name = value.get(“name”); } Mapper ( NullWritable key, LazyRecord value) { String name; int age = value.get(“age”); if (age < 35) name = value.get(“name”); } 12
Skip List (Logical Behavior) R1R2R10R20R99 R R90... R1 R20R90R R10 Skip 100 Records Skip R1R2R10R20R90R99 R1R10R20R90 R1R100
Example Age Joe Jane David Name Skip10 = 1002 Skip100 = 9017 Skip 10 = 868 … … Mary 10 rows 100 rows Skip Bytes Ann … if (age < 35) return name … 14 John
Example Age “hobbies”: tennis “friends” : Ann, Nick Null “friends” : George Info Skip10 = 2013 Skip100 = Skip 10 = 1246 … “hobbies”: tennis, golf 10 rows 100 rows … … if (age < 35) return hobbies … … 15
Outline Column-Oriented Storage Lazy Record Construction Compression Experiments Conclusions 16
Compression # Records in B1 # Records in B2 LZO/ZLIB compressed block RID : LZO/ZLIB compressed block RID : B1 B2 Null Skip10 = 210 Skip100 = 1709 Skip 10 = 304 … … 0: {tennis, golf} 10 rows 100 rows … Dictionary “hobbies” : 0 “friends” : 1 Compressed Blocks Dictionary Compressed Skip Lists Skip Bytes Decompress 0 : {tennis} 1 : {Ann, Nick} 1: {George} 17
Outline Column-Oriented Storage Lazy Record Construction Compression Experiments Conclusions 18
RCFile Metadata Joe, David John, Smith 23, 32 {“hobbies”: {tennis} “friends”: {Ann, Nick}}, {“friends”:{George}} {“hobbies”: {tennis, golf}}, {“hobbies”: {swimming} “friends”: {Helen}} Row Group 1 Row Group 2 NameAgeInfo Joe23“hobbies”: {tennis} “friends”: {Ann, Nick} David32“friends”: {George} John45“hobbies”: {tennis, golf} Smith65“hobbies”: {swimming} “friends”: {Helen} 45, 65 19
Compressed Metadata Compressed Column A Compressed Column B Compressed Column C Compressed Column D RCFile: Inside each Row Group Row Grp
CIF: Separate file for each column Compressed Metadata Compressed Column A Compressed Column B Compressed Column C Compressed Column D MB
Experimental Setup 42 node cluster Each node: 2 quad-core 2.4GHz sockets 32 GB main memory four 500GB HDD Network : 1Gbit ethernet switch 22
Overhead of Columnar Storage Synthetic Dataset 57GB 13 columns 6 Integers, 6 Strings, 1 Map Query Select * 23 Single node experiment
Benefits of Column-Oriented Storage Query Projection of different columns 24 Single node experiment
Workload URLInfo { String url String srcUrl time fetchTime String inlink[] Map metadata Map annotations byte[] content } If( url contains “ibm.com/jp” ) find all the distinct encodings reported by the page Schema Query Dataset : 6.4 TB Query Selectivity : 6% 25
26 SEQ: 754 sec Comparison of Column-Layouts (Map phase)
Comparison of Column-Layouts (Map phase)
Comparison of Column – Layouts (Total job) 28 SEQ: 806 sec
Conclusions Describe a new column-oriented binary storage format in MapReduce. Introduce skip list layout. Describe the implementation of lazy record construction. Show that lightweight dictionary compression for complex columns can be beneficial. 29
CIF / RCFile comparison 30 CIFRCFile Modify block placement policy YN Modify block contentYY Metadata storedIn blockSeparate file “row group” sizeLargeFlexible Lazy tuple deserialization YY Skip listsYN
Comparison of Sequence Files 31
RCFile 32
Comparison of Column-Layouts LayoutData Read (GB) Map Time (sec) Map Time Ratio Total Time (sec) Total Time Ratio Seq - uncomp Seq - record Seq - block Seq - custom x8061.0x RCFile x7611.1x RCFile - comp x2912.8x CIF - ZLIB x7710.4x CIF x7810.3x CIF - LZO x7910.2x CIF - SL x7011.5x CIF -DCSL x6312.8x 33
Comparison of Column-Layouts 34 SEQ: 754 sec CIF – DCSL results in the highest map time speedup and improves the total job time by more than an order of magnitude (12.8X).
RCFile 35 SEQ: 754 sec
36 Comparison of Sequence Files SEQ: 754 sec