Neutron Stars, Supernova & Phases of Dense Quark Matter Seeking observable signatures for dense quark matter in astrophysics Sanjay Reddy Theoretical Division,

Slides:



Advertisements
Similar presentations
An Astrophysical Application of Crystalline Color Superconductivity Roberto Anglani Physics Department - U Bari Istituto Nazionale di Fisica Nucleare,
Advertisements

Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
The Neutron Star Equation of State- Electromagnetic Observations Frits Paerels Columbia University GWPAW, UW Milwaukee, January 26, 2011.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Compact neutron stars Theory & Observations Hovik Grigorian Yerevan State University Summer School Dubna – 2012.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
LIGO- G Z August 18, 2004LIGO Scientific Collaboration 1 When do the pulsar upper limits get interesting? Ben Owen with Ian Jones.
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
Recent surprises from observations of Compact Stars Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky David Blaschke (Wroclaw.
Peeking into the crust of a neutron star Nathalie Degenaar University of Michigan.
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Two talks for the price of one: Cooling by angulon annihilation and Asymmetrical fermion superfluids P. Bedaque (Berkeley Lab) G. Rupak, M. Savage, H.
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 17 – AGB evolution: … MS mass > 8 solar masses … explosive nucleosynthesis … MS.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Rigid strange lattices in Proto-Neutron Stars Juergen J. Zach Ohio State/UCSD 13 May, 2002 INT Nucleosynthesis workshop.
1 Angular momentum mixing in non-spherical color superconductors Defu Hou Central China Normal University, Wuhan Collaborators: Bo Feng, Hai-cang Ren.
Vivian de la Incera University of Texas at El Paso THE ROLE OF MAGNETIC FIELDS IN DENSE QUARK MATTER.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
SUPERNOVA NEUTRINOS AT ICARUS
Recent surprises from observations of Compact Stars Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky David Blaschke (Wroclaw.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Cooling of CasA With&without Quark Matter CSQCD-IV- Prepow my ‘cool’ co-authors: D. Blaschke, D. Voskresensky Hovik Grigorian : Yerevan State University,
Neutrino Processes in Neutron Stars Evgeni E. Kolomeitsev (Matej Bel University, Banska Bystrica, Slovakia)
The three flavor LOFF phase of QCD N. D. Ippolito University and INFN, Bari, Italy HISS : Dense Matter in HIC and Astrophysics, Dubna, 2006.
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Neutron Star Binaries and Related Astrophysical Issues Chang-Hwan 1.
Current Status of Neutron Stars: Astrophysical Point of View Chang-Hwan 1.
Qun Wang University of Science and Technology of China
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Thermal phase transitions in realistic dense quark matter
IRGAC 2006 COLOR SUPERCONDUCTIVITY and MAGNETIC FIELD: Strange Bed Fellows in the Core of Neutron Stars? Vivian de la Incera Western Illinois University.
Vivian de la Incera University of Texas at El Paso DENSE QUARK MATTER IN A MAGNETIC FIELD CSQCD II Peking University, Beijing May 20-24, 2009.
Relativistic BCS-BEC Crossover in a boson-fermion Model
1 Pairings in quark-baryonic matter Qun Wang University of Science and Technology of China  Introduction  CSC: from weak to strong couplings  Boson-fermion.
Color Superconductivity: Recent developments Qun Wang Department of Modern Physics China University of Science and Technology Quark Matter 2006, Shanghai.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
K S Cheng Department of Physics University of Hong Kong Collaborators: W.M. Suen (Wash. U) Lap-Ming Lin (CUHK) T.Harko & R. Tian (HKU)
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
…1 ● At asymptotic densities and T = 0, the ground state of QCD is the CFL phase (highly symmetric diquark condensate) ● Understanding the interior of.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Proton Mass and EoS for Compressed Baryonic Matter ATHIC 14/11/12 Mannque Rho (Saclay and Hanyang)
Neutrino Studies at the Spallation Neutron Source, ORNL, 8/29/03W.R. Hix (UTenn./ORNL) Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Waseda univ. Yamada lab. D1 Chinami Kato
Color Superconductivity in High Density QCD
Bayesian analysis for hybrid star
Yerevan State University
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Color Superconductivity in dense quark matter
Color Superconductivity in High Density QCD
Color Superconductivity
Color Superconductivity in High Density QCD
Cooling of Neutron Stars
Roberto Casalbuoni Dept. of Physics, University of Florence
Roberto Casalbuoni Dept. of Physics, University of Florence
Presentation transcript:

Neutron Stars, Supernova & Phases of Dense Quark Matter Seeking observable signatures for dense quark matter in astrophysics Sanjay Reddy Theoretical Division, LANL

Observables: (sensitive to the high density physics) Mass and Radius Supernova Neutrinos Surface Temperature and Age Spin period (  and d  /dt) Gravity Waves Hard Physics: E ~  400 MeV Soft Physics: E ~ T  MeV

 Origin of the clustering at M NS ~1.4 M solar ?  Physics issue : EoS at high density - what is the heaviest neutron stars one can make ? Neutron Star Mass Courtesy: J. Lattimer

Radius: L ∞ =F d 2 = 4  R ∞ 2  T ∞ 4 RX J : nearby (d~120 pc) isolated neutron star

Radius: L ∞ =F d 2 = 4  R ∞ 2  T ∞ 4 Pons et al. Astrophys. J. 564: , 2002 Walter & Lattimer, Astrophys. J.576:L145-L148,2002 Deviations from Blackbody spectra: atmosphere: sensitive to local gravity (GM/R 2 )  Potentially can yield both M and R

Constraints and Trends: Gravitational Red-shift: observation of spectral lines (Cottam, Paerels, Mendez, Nature 420: 51 (2002). Quasi-Periodic Oscillations: indicate a last stable orbit Exotic Stars: Soft EoS

Phases of Dense Quark Matter  Attractive interactions destabilize the Fermi surface  formation of cooper-pairs (BCS Theory)  In quark matter most attractive channel is anti- symmetric in color space  spin zero pairs must be anti-symmetric in flavor u du u d d 2-flavor quark matter: (2SC) Rapp, Schaefer, Shuryak, and Velkovsky Phys.Rev.Lett. 81, 53 (1998) Alford, Rajagopal, Wilczek Phys.Lett.B422, , (1998)  100 MeV

Color-Flavor Locked Phase BCS pairing of all 9 quarks:   100 MeV ! Excitation Spectrum Energy Alford, Rajagopal & Wilczek, Nucl. Phys. B 558, 219 (1999)

Charge Neutrality in Dense Quark Matter uds e - P F Normal Quark Matter requires electrons for charge neutrality  breaks iso-spin Alford, Rajagopal, Reddy and Wilczek Phys.Rev.D64:074017, (2001) CFL requires   m s 2 /4 

Less symmetric phases: (when three is a crowd) 24 CFL  CFLK o CFL 2SC 2SC  Normal Bedaque, Schafer Nucl. Phys. A697: , (2002) Kaplan, Reddy, Phys. Rev. D65: , (2002) Shovkovy, Huang, Phys. Lett. B 564: 205, (2003) Alford, Kouvaris, Rajagopal, hep-ph/ Alford & Rajagopal, hep-ph/ Steiner, Reddy, Prakash hep-ph/ Neutrality favors CFL

Heterogeneous Mixed Phases (phase transitions with 2 conserved charges) Glendenning, Phys. Rev. D46: ,1992 Heterogeneous co-existence line: (droplets-rods- slabs) Sharp (polarized) interface : Large density discontinuity Alford, Rajagopal, Reddy and Wilczek Phys.Rev.D64:074017, (2001) A B/C D

Quark Matter EoS & Hybrid Stars Alford & Reddy, Phys. Rev. D (2003)

Can Quark Stars Mimic Nuclear Stars ?

Core Collapse Supernova Fe core becomes unstable Collapse time scale ~ 100 ms Nearly Adiabatic B.E. ~ G M core /R final ~3 X ergs

3X10 7 km 1500 km 10 km B. E. ~2-3 X ergs 100 km Hot & dense Proto-neutron Star: t~1-2 s Core collapse t collapse ~100 ms Supernova Neutrinos - a (proto) neutron star is born Shock wave E shock ~10 51 ergs

Proto-Neutron Star Evolution 3  ergs is stored in neutrinos and internal energy.

Proto-neutron Star Phase: late times (t > 3-4 s) Neutrino diffusion dominates evolution Time scales set by neutrino mean free path and dense matter EoS Burrows & Lattimer, Astrophys. J 307, 178 (1986) Kiel & Janka, Astrnm. & Astrophys. 296, 145 (1995) Pons, Reddy, Prakash, Lattimer, Miralles,Astrophys. J. 513, 780 (1999) Reddy, Prakash, Lattimer, Pons Phys. Rev. C 59, 2888 (1999)

simulations with normal quark matter Pons, Steiner, Prakash and Lattimer, Phys.Rev.Lett. 86, 5223 (2001) Delayed collapse to black-holes: Generic to most high density transitions to very soft EoS.

Microphysics of neutrino mean free paths qq target E E’ E

Neutrino Mean Free Path in Nuclear Matter Horowitz & Wehrberger, Phys. Lett. B 266, 236 (1991) Burrows & Sawyer, Phys. Rev. C 58, 554 (1999) Reddy, Pons, Prakash, Lattimer, Phys. Rev. C 59, 2888 (1999)

Neutrino Mean Free Path in a Heterogeneous Phase ’ Coherent Scattering: enhances cross sections Q W ~200 Reddy, Bertsch & Prakash, Phys. Lett. B475, 1 (2000)

Neutrino Propagation in Superconducting phases Gap modifies excitation spectrum + p+q p p     Carter & Reddy, Phys. Rev. D 62, (2000)

Schafer Phys. Rev.D 65, (2002) Manuel & Tytgat, Phys. Lett. B 479, 190 (2000) Hong, Lee & Min, Phys. Lett. B 477, 137 (2000) Hong, Phys. Lett. B 473, 118 (2000) Son & Stephanov, Phys. Rev. D 61, (2000) Effective theory for Goldstone modes:

Neutrino-Goldstone Boson Interactions oo   --   W-W- Z Z W-W- e - e - Reddy, Sadszikowski & Tachibana, Nucl. Phys. A 714, 337 (2003) Jaikumar, Prakash & Schafer, Phys. Rev. D 66, (2002)

Goldstone modes are space-like (  < q) ’ oo GFfGFf e e - ++ GFfGFf Neutrinos can Cerenkov radiate Goldstone modes

Neutrino-Goldstone Boson Interactions Reddy, Sadszikowski & Tachibana, Nucl. Phys. A 714, 337 (2003)

Neutron Star Cooling Crust  cools by conduction  C ~1-10 yrs,  R ~ km T S ~10 6 K Photon emission Isothermal core cools by neutrino emission t < 10 5 yrs Rapid Cooling: (n p /n B > 1/9) n  pe - e & e - p  n e dE/dt  (n e /n o ) 1/3 T 9 6 erg/cm 3 /s Standard (slow) Cooling: nn  npe - e & np  nne + e dE/dt  (n e /n o ) 1/3 T 9 8 erg/cm 3 /s

Neutron Star Cooling: Data “Standard” (slow) cooling: nn->npe Rate ~10 22 T 9 8 erg/cm 3 /s Exotic (fast) cooling: n -> p e -  d -> u e - Rate ~10 27 T 9 6 erg/cm 3 /s Tsuruta et al. Ap. J. 571, L143 (2002)

Outlook Observation of a small star (R  8 km) would favor a soft quark EoS / Observation of a heavy star ( M  2 M  ) would disfavor quark matter. Hadron  quark transition density is poorly known Role of the strange quark mass (and neutrality) important  phase structure not fully understood Neutrino diffusion time scale is sensitive to properties of matter at supra-nuclear density  Supernova neutrinos - a promising probe Need neutrino rates and thermodynamics at finite T in less “symmetric” quark phases (Gapless CFL, 2SC, Gapless 2SC, unpaired quark matter, mixed phases etc)