Morphology of Inner Magnetospheric low- energy ions M. Yamauchi 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, L.M. Kister 4, F. Mazouz 5, Y. Ebihara 6 (1)

Slides:



Advertisements
Similar presentations
Locations of Boundaries of the Outer and Inner Radiation Belts during the Recent Solar Minimum, as Observed by Cluster and Double Star Natalia Ganushkina.
Advertisements

U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Direct measurements of chorus wave effects on electrons in the.
Electron Acceleration in the Van Allen Radiation Belts by Fast Magnetosonic Waves Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, N. P. Meredith 1.
Evidence at Saturn for an Inner Magnetospheric Convection Pattern, Fixed in Local Time M. F. Thomsen (1), R. L. Tokar (1), E. Roussos (2), M. Andriopoulou.
Fate of sub-keV ring current ions observed by Viking Viking 20 years Yamauchi and Lundin * Superposed epoch analyses * Viking Ion data + AE (and Dst) 
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Sudden appearance of sub- keV structured ions in the inner magnetosphere within one hour: drift simulation M. Yamauchi 1, Y. Ebihara 2, I. Dandouras 3,
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
PLASMA TRANSPORT ALONG DISCRETE AURORAL ARCS A.Kullen 1, T. Johansson 2, S. Buchert 1, and S. Figueiredo 2 1 Swedish Institute of Space Physics, Uppsala.
SSL UC Berkeley 2010 June ACE/SOHO/STEREO/Wind Workshop Interplanetary Propagation of Solar Impulsive Energetic Electrons Linghua Wang, Bob Lin and S ä.
Cusp O+ H+ e- "SPI" event #1 event #2 MLT energy ratio = 15~20 O+ H+ 68°CGLat66°CGLat 63°CGLat #1) Mono-energetic ion injection with O+ faster.
Yamauchi et al: Effect of the ionizing radiation on the rain-time atmospheric electric field (PG) 2 week rain Chernobyl PICO 09:36 (EGU ) Fukushima.
CLUSTER Electric Field Measurements in the Magnetotail O. Marghitu (1, 3), M. Hamrin (2), B.Klecker (3), M. André (4), L. Kistler (5), H. Vaith (3), H.
Concentrated Generator Regions in the Auroral Magnetosphere as Derived from Conjugated Cluster and FAST Data M. Hamrin (1),O. Marghitu (2, 3), B.Klecker.
Magnetospheric ULF wave activity monitoring based on the ULF-index OLGA KOZYREVA and N. Kleimenova Institute of the Earth Physics, RAS.
Finite Gyroradius Effect in Space and Laboratory 1. Radiation belt (Ring current) 2. Auroral phenomena (Substorm current) 3. Shock acceleration and upstream.
Morphology of Inner Magnetospheric low-energy ions M. Yamauchi, et al. Swedish Institute of Space Physics (IRF), Kiruna.
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS COSPAR, 2002, Houston, Texas, Paper D
Fate of cold ions in the inner magnetosphere: energization and drift inferred from morphology and mass dependence M. Yamauchi 1, I. Dandouras 2, H. Reme.
Magnetosphere-Ionosphere coupling processes reflected in
Hot He + events in the inner magnetosphere observed by Cluster M. Yamauchi 1, I. Dandouras 2, H. Reme 2, H. Nilsson 1 (1) Swedish Institute of Space Physics.
EISCAT-Cluster observations of quiet-time near-Earth magnetotail fast flows and their signatures in the ionosphere Nordic Cluster Meeting, Uppsala, Sweden,
Sub-keV Ring Current Ions: Source, Transport, and O+/H+ difference M. Yamauchi, R. Lundin, H. Nilsson, S. Arvelius (IRF-Kiruna), Y. Ebihara (NIPR), and.
Oxygen Injection Events observed by Freja Satellite M. Yamauchi 1, L. Eliasson 1, H. Nilsson 1, R. Lundin 1, and O. Norberg 2 1.Swedish Institute of Space.
Equatorial signatures of an auroral bulge and a filamentation/demarcation of a transpolar arc observed by Cluster M. Yamauchi 1, I. Sandahl 1, R. Lundin.
Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star Natalia Ganushkina (1, 2), Iannis Dandouras (3), Yuri.
M. Yamauchi 1, H. Nilsson 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, Y. Ebihara 4 (1) Swedish Institute of Space Physics (IRF), Kiruna, Sweden (2) CNRS.
Energy conversion at Saturn’s magnetosphere: from dayside reconnection to kronian substorms Dr. Caitríona Jackman Uppsala, May 22 nd 2008.
Escaping ions over polar cap. Inner magnetosphere, Bow shock/Foreshock, and Ancient magnetosphere.
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
Understanding the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team EANA-2012 (P4.30, ) (1) Swedish.
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
Substorm-origin sub-keV ring current ions: wedge-like structure ICS-9, Graz, ~7 Substorm : production of plasma Sub-keV ring current : fossil of.
17th Cluster workshop Uppsala, Sweden , May 12-15, 2009
Hot He + events in the inner magnetosphere observed by Cluster 1 Yamauchi, et al. (2014), JGR, doi: /2013JA Inner magnetosphere: Majority.
The large scale convection electric field, ring current energization, and plasmasphere erosion in the June 1, 2013 storm Scott Thaller Van Allen Probes.
Multiple Ion Acceleration at Martian Bow Shock M. Yamauchi 1, Y. Futaana 1, A. Fedorov 2, R.A. Frahm 3, E. Dubinin 4, R. Lundin 1, J.-A. Sauvaud 2, J.D.
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
Swedish Institute of Space Physics, Kiruna M. Yamauchi 1 Different Sun-Earth energy coupling between different solar cycles Acknowledgement:
Techniques for mass resolution improvement achieved by typical plasma analyzers: Modeling and simulations 1 G. Nicolaou, 1 M. Yamauchi, 1 M. Wieser, 1.
RAPID calibrations in the radiation belts Elena Kronberg 1 and Patrick W. Daly 1 (1)Max-Planck-Institute for Solar System Research, Katlenburg-Lindau,
R. Maggiolo 1, M. Echim 1,2, D. Fontaine 3, A. Teste 4, C. Jacquey 5 1 Belgian Institute for Space Aeronomy (IASB-BIRA); 2 Institute.
CIS Calibration Status Lynn Kistler, Chris Mouikis Adrian Blagau Iannis Dandouras, Alain Barthe 22 th Cross-Calibration Meeting, Tenerife, November 2015.
Modulation of chorus wave intensity by ULF waves from Van Allen Probes Observation Lunjin Chen 1, Zhiyang Xia 1, Lei Dai 2 1 Physics Dept., The University.
Magnetospheric Solitary Structure maintained by 3000 km/s ions and its relation to Auroral Bulge after a Substorm M. Yamauchi1, H. Nilsson1, I. Dandouras2,
Post-Cluster: Need for a mission to understand Nitrogen in space
Plasma Wave Excitation Regions in the Earth’s Global Magnetosphere
Disturbance Dynamo Effects in the Low Latitude Ionosphere
M. Yamauchi1, I. Dandouras2, H. Reme2,
Sub-keV Phenomena of Dayside Ring Current
Oxygen Injection Events observed by Freja Satellite
Source Location of the Wedge-like Dispersed (sub-keV) Ring Current in the Morning Sector During a Substorm M. Yamauchi (IRF-Kiruna), P.C. Brandt, Y. Ebihara,
M. Yamauchi1, H. Nilsson1, R. Lundin1, I. Dandouras2, H. Reme2, H
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
Sources of < 10 keV ring current ions: supply mechanism?
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
M. Yamauchi1, Y. Futaana1, R. Lundin1, S. Barabash1, M. Wieser1, A
Yama's works Using geomagnetic data
Yuki Takagi1*, Kazuo Shiokawa1, Yuichi Otsuka1, and Martin Connors2  
Multiple Ion Acceleration at Martian Bow Shock
Debye-like shielding effect on low-cloud electricity by the radioactive aerosol after Fukushima nuclear accident M. Yamauchi1, M. Takeda2, M. Makino3,
Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT M. Yamauchi1, I. Dandouras2, P.W.
Mars, Venus, The Moon, and Jovian/Saturnian satellites
Swedish Institute of Space Physics (IRF), Kiruna
M. Yamauchi1, A. Schillings1,2, R. Slapak3, H. Nilsson1, I. Dandouras3
M. Yamauchi1, A. Schillings1,2, T. Sergienko1, C. -F. Enell3, R
M. Yamauchi1, T. Sergienko1, C. -F. Enell2, A. Schillings1, R
Past cusp researches: (potentially) missing facts
Presentation transcript:

Morphology of Inner Magnetospheric low- energy ions M. Yamauchi 1, I. Dandouras 2, H. Reme 2, R. Lundin 3, L.M. Kister 4, F. Mazouz 5, Y. Ebihara 6 (1) Swedish Institute of Space Physics (IRF), Kiruna, Sweden (2) CNRS and U. Toulouse, IRAP, Toulouse, France (3) IRF, Umeå, Sweden (4) U. New Hampshire, Durham, NH, USA (5) IPSL/LATMOS, Paris, France (6) Kyoto University, Japan Cluster workshop 2013 A completed version of 2011 presentation

Ion drift Westward drift for high energy/evening and Eastward drift for low-energy/morning

Where? Inner Magnetosphere at 4~6 R E (Cluster perigee) Species? H + of 10 eV ~ 10 keV (CIS/CODIF energy range) Distribution? Intense ion population (except plasma sheet) In this work: (a) Statistics distribution, (b) 1-2 hour scale evolution/decay (using inbound-outbound asymmetry), and (c) relation to substorms (using elapsed time from high AE). We examined all SC-4 perigee pass during (about 670 traversals, with relatively clean data of 460 traversals). Analyses

(b) Wedge-like energy-latitude dispersed ions at sub-keV range: predominantly found in the morning sector some hours after a substorm. The source population is much colder than the plasma sheet. (c) Vertical stripes: similar to the wedge-like structure but dispersion is weak (nearly vertical in the spectrogram). The energy extends from the about 10 keV to sub-keV. (d) Short bursts of low-energy ions isolated from the above structures: a peak energy flux less than 100 eV but not thermal. (e) Internal asymmetry of (b) We examine ion signatures of

Before taking detailed analyses, we have to examine possible “biases” such as Instrument Degradation or Solar Cycle phase

Valid traversals for , , are 177, 115, 202, respectively.  rapid decrease is due to instrumental Decreasing trend in time (For warmed trapped ions, we cannot take statistics for because they are found high radiation dose region)

 Rapid degradation of the sensor Occurrence of substorms is rather constant  Is the trend due to some bias?

Not very much changed from to  We can safely use data together. Is Local Time distribution affected by this bias?

Local Time distribution symmetric + asymmetric enhanced within traversal

Relation to substorm? AL AU AL AU

eastward drift Viking 14 MLT poleward 6 MLT 9 MLT 12 MLT 15 MLT 18 MLT For the wedge-like dispersion, the relation to substorm has already been studied: After AE>400 nT activity, (1) Moves eastward (2) Decay in time cf. Viking hr from substorm

data Local Time distribution Relation to AE activities

The inner magnetospheric low-energy ion populations (1)-(3) below show significant changes within 1-2 hours. (1) Wedge-like energy-latitude dispersed ions (< a few keV), (2) Vertical stripes (< 10 keV), (3) Short-lived low-energy ion burst (< few hundred eV). For all three patterns, asymmetric cases (large inbound- outbound difference) are found more often than symmetric cases at almost all LT. For (2), majority of local midnight pass show large inbound- outbound difference when AL<300 nT. For (3), the lifetime is estimated as short as ≤ 1 hour Summary Yamauchi et al. (2013): Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, , doi: /angeo , 2013.