ABJM 行列模型の最近の進展 森山翔文 (名古屋大学 KMI ) [arXiv:1106.4631] with H.Fuji and S.Hirano [arXiv:1207.4283, 1211.1251, 1301.5184] with Y.Hatsuda and K.Okuyama.

Slides:



Advertisements
Similar presentations
Stokes Phenomena and Non-perturbative Completion in the multi-cut matrix models Hirotaka Irie (NTU) A collaboration with Chuan-Tsung Chan (THU) and Chi-Hsien.
Advertisements

Review Of Statistical Mechanics
A method of finding the critical point in finite density QCD
Calabi-Yau compactifications: results, relations & problems
超弦理論とインフレーショ ン 向山信治 (東大理) 第1回「超弦理論と宇宙」研究会@尾 道. String Theory? The Cosmic Uroboros by Sheldon Glashow Three mysteries: Inflation, Dark Energy & Dark Matter.
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
M-Theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M.
Summing Up All Genus Free Energy of ABJM Matrix Model Sanefumi Moriyama (Nagoya U) JHEP [arXiv: ] with H.Fuji and S.Hirano.
8/1(Thu), 2013 Parallel talk (Theoretical development) Daisuke Kadoh (KEK) D.K. and Syo Kamata, in preparation TexPoint fonts used in.
Euclidean Wilson loops and Riemann theta functions M. Kruczenski Purdue University Based on: arXiv: (w/ R. Ishizeki, S. Ziama) Great Lakes 2011.
Yu Nakayama (Kavli IPMU, Caltech)
新しいラージN極限と インスタントン 柴 正太郎 益川塾
Masazumi Honda SOKENDAI & KEK Reference: JHEP (2012) (arXiv: [hep-th])
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Random Matrix Theory Workshop NBIA May 2007 Large N double scaling limits in Gauge Theories and Matrix Models Gaetano Bertoldi Swansea University.
The superconformal index for N=6 Chern-Simons theory Seok Kim (Imperial College London) talk based on: arXiv: closely related works: J. Bhattacharya.
Topological String Theory and Black Holes Eurostrings 2006, Cambridge, UK - review - w/ C. Vafa, E.Verlinde, hep-th/ work in progress Robbert.
The Cosmological Constant and Technical Naturalness Sunny Itzhaki hep-th/ work to appear.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
String Theory Books MBG 60 April 7, Chronology JHS: , Princeton U. MBG: , IAS 1972: JHS to Caltech, MBG to England 1979: Begin collaboration.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
AGT 関係式 (1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 2 日(水) 12:30-14:30.
Variational Approach to Non- Equilibrium Gluodynamics 東京大学大学院 総合文化研究科 西山陽大.
Integrability in Superconformal Chern-Simons Theories Konstantin Zarembo Ecole Normale Supérieure “Symposium on Theoretical and Mathematical Physics”,
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
クォーク・グルーオン・プラズマにおける「力」の量子論的記述
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A AA A.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Stokes Phenomena and Non-perturbative Completion in the Multi-cut Two-matrix Models Hirotaka Irie National Center for Theoretical Sciences (NCTS) with.
Integrability of N=6 Super Chern-Simons Theories Dongsu Bak University of Seoul with S. J. Rey and D. Kang (KIAS, 9/24/2008) TexPoint fonts used in EMF.
Minimal area surfaces in hyperbolic space
Tachyon-Dilaton driven Inflation as an α'-non perturbative solution in first quantized String Cosmology Anna Kostouki, King’s College London DISCRETE ’08,
Tunneling cosmological state and origin of SM Higgs inflation A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow based on works with A.Yu.Kamenshchik.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Random volumes from matrices Sotaro Sugishita (Kyoto Univ.) Masafumi Fukuma & Naoya Umeda (Kyoto Univ.) arXiv: (accepted in JHEP)
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Background Independent Matrix Theory We parameterize the gauge fields by M transforms linearly under gauge transformations Gauge-invariant variables are.
Matrix Models and Matrix Integrals A.Mironov Lebedev Physical Institute and ITEP.
In-medium QCD forces for HQs at high T Yukinao Akamatsu Nagoya University, KMI Y.Akamatsu, A.Rothkopf, PRD85(2012), (arXiv: [hep-ph] ) Y.Akamatsu,
Higgs branch localization of 3d theories Masazumi Honda Progress in the synthesis of integrabilities arising from gauge-string Hotel Biwako.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
The Topological String Partition Function as a Wave Function (of the Universe) Erik Verlinde Institute for Theoretical Physics University of Amsterdam.
1 AdS/CFT correspondence and generation of space-time in Matrix models March at KEK Hikaru Kawai arXiv: , , with T. Suyama arXiv: ,
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Workshop on Optimization in Complex Networks, CNLS, LANL (19-22 June 2006) Application of replica method to scale-free networks: Spectral density and spin-glass.
Discrete R-symmetry anomalies in heterotic orbifold models Hiroshi Ohki Takeshi Araki Kang-Sin Choi Tatsuo Kobayashi Jisuke Kubo (Kyoto univ.) (Kanazawa.
Hank Thacker University of Virginia References: J. Lenaghan, S. Ahmad, and HT Phys.Rev. D72: (2005) Y. Lian and HT, Phys. Rev. D75: (2007),
Summing Up All Genus Free Energy of ABJM Matrix Model Sanefumi Moriyama (Nagoya U) arXiv: with H.Fuji and S.Hirano.
Laboratoire Charles Coulomb
Numerical Solution of the Spectral Problem and BFKL at Next-to-Next-to-Leading Order in N=4 SYM Fedor Levkovich-Maslyuk King’s College London based on.
Pion Correlators in the ε- regime Hidenori Fukaya (YITP) collaboration with S. Hashimoto (KEK) and K.Ogawa (Sokendai)
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
The Ideal Diatomic and Polyatomic Gases. Canonical partition function for ideal diatomic gas Consider a system of N non-interacting identical molecules:
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Takeshi Morita Tata Institute of Fundamental Research Resolution of the singularity in Gregory-Laflamme transition through Matrix Model (work in progress)
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris “Sakharov Conference”, Moscow,
With H. Awata, K. Nii (Nagoya U) & M. Shigemori (YITP) ( & to appear soon) KIAS Pre-Strings 2013 Shinji Hirano (University of the Witwatersrand)
松尾 善典 Based on YM-Tsukioka-Yoo [arXiv: ] YM-Nishioka [arXiv: ]
The effect of Gravity on Equation of State Hyeong-Chan Kim (KNUT) FRP Workshop on String Theory and Cosmology 2015, Chungju, Korea, Nov ,
The origin of space-time as seen from matrix model simulations Seminar at KMI, Nagoya U., Nov. 8 (Tue.), 2011 Jun Nishimura (KEK,SOKENDAI) Ref.) M.Hanada,
Boundary conditions for SU(2) Yang-Mills on AdS 4 Jae-Hyuk Oh at 2012 workshop for string theory and cosmology, Pusan, Korea. Dileep P. Jatkar and Jae-Hyuk.
Anisotropic plasma at finite U(1) chemical potential Xian-Hui Ge 葛先辉 Department of Physics, Shanghai University with L. Cheng and S. J. Sin arXiv:
CERNTR, 16 February 2012 Non-perturbative Physics from String Theory Dr. Can Kozçaz, CERN.
M-theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI/KyotoU-YITP)
STRING THEORY AND M-THEORY: A Modern Introduction
Localization and Supersymmetric Entanglement Renyi entropy
Gravity from Entanglement and RG Flow
Presentation transcript:

ABJM 行列模型の最近の進展 森山翔文 (名古屋大学 KMI ) [arXiv: ] with H.Fuji and S.Hirano [arXiv: , , ] with Y.Hatsuda and K.Okuyama

グラフで見る M2 森山翔文 (名古屋大学 KMI ) [arXiv: ] with H.Fuji and S.Hirano [arXiv: , , ] with Y.Hatsuda and K.Okuyama

「 M2 、 100 人に聞きました」

"M2 の分配関数 " のグラフ

質問 二歳児: 「なんでにょろにょ ろ?」 物理学者: 「縦軸は?横軸は?」

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Previously in Fuji-Hirano-M Perturbative Terms of ABJM Matrix Model in 't Hooft Expansion Sum Up To ・・・ Z(N) = N1=N2=NN1=N2=N

Previously in Fuji-Hirano-M (Up To Constant Maps & Instanton Effects) cf: [Marino-Putrov, Honda et al] Airy Function Ai(N) = (2πi) -1 ∫ dμ exp[μ 3 /3 - μN] Renormalization of 't Hooft coupling λ = N/k λ ren = λ - 1/24 + 1/(24k 2 ) Z(N) =

Previous Method (Analytic Continuation N 2 → - N 2 ) Chern-Simons Theory on Lens Space S 3 /Z 2 (String Completion) Open Top A-model on T*(S 3 /Z 2 ) (Large N Duality) Closed Top A on Hirzebruch Surface F 0 = P 1 x P 1 (Mirror Symmetry) Closed Top B on Spectral Curve u v = H( x, y ) Holomorphic Anomaly Equation!!

Motivation① M2-brane Special Case No Fractional Branes: N 1 =N 2 =N Flat Space: k=1 IIA (C 4 /Z k ⇒ CP 3 x R x S 1 ): k=∞ with N/k Fixed N =6 Chern-Simons Theory (N 1,N 2,k) ⇕ Min(N 1,N 2 ) M2 with |N 1 -N 2 | Fractional M2 on C 4 /Z k ABJ(M)

Motivation① M2-brane Partition Function of M2 WorldVolume Theory Z = Airy(N) ≈ exp[-N 3/2 ] DOF N 3/2 Reproduced [Drukker-Marino-Putrov] N x M2 Also Non-Perturbative Corrections

Motivation① M2-brane Non-Perturbative Corrections 't Hooft Expansion in Matrix Model Exp[-2π√ 2N/k ] Identified as String Wrapping CP 1 in CP 3 Asymptotic Expansion-like Analysis Exp[-π√ 2Nk ] Identified as D2-brane Wrapping RP 3 in CP 3 [Drukker-Marino-Putrov]

Motivation② From Gaussian To ABJM ABJM CSSuper Gauss CS q-deformSuperalg

Dissatisfaction① M-theory from 't Hooft Expansion F(N) = log[Z(N)] F(N) = N -2 [F 0 pert (λ) + e -√ λ + e -2√ λ +...] + N 0 [F 1 pert (λ) + e -√ λ + e -2√ λ +...] + N 2 [F 2 pert (λ) + e -√ λ + e -2√ λ +...] + N 3 [F 3 pert (λ) + e -√ λ + e -2√ λ +...] k N M-theory Regime k: Fixed 't Hooft Regime λ=N/k: Fixed but Large

Dissatisfaction② Instanton Effects? - Worldsheet Instantons? - Membrane Instantons? - Bound States?

Message from Airy① Hidden Structure? String Theory (Dual Resonance Model) Veneziano Amplitude ⇒ String Conformal Symmetry [Virasoro, Nambu] Membrane Theory Free Energy as Airy Function ⇒ Hidden Structure for Membrane?

Z CS (N) = ∫ DA Exp ∫ A dA- A ∧ A ∧ AZ M (N) ~ ∫ DA Exp S 11SG Ai(N) = (2πi) -1 ∫ dμ Exp[μ 3 /3 - μN] Message from Airy② CS? Cubic? Chern-Simons Theory M- Theory Airy Function Wave Function of The Universe [Ooguri-Verlinde-Vafa] Membrane WorldVolume Theory [Aharony-Bergman-Jafferis-Maldacena] All Genus Partition Function [Fuji-Hirano-M]

Message from Airy③ Statistical Mechanics Ai(N) = (2πi) -1 ∫ dμ exp[μ 3 /3 - μN] Grand Potential in Statistical Mechanics? e J(μ) = 1 + ∑ N=1 ∞ Z(N) e -μN Z(N) = (2πi) -1 ∫ dμ exp[J(μ) - μN] What is the Statistical Mechanical System? Grand Potential, Simpler!?

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Fermi Gas After Some Calculation,... [Marino-Putrov] Non-Interacting Fermi Gas Z(N) = (N!) -1 ∑ σ (-1) σ ∫ ∏ i dq i 〈 q i | ρ |q σ(i) 〉 Density Matrix ρ = e -H ρ = [2 cosh q/2] -1/2 [2 cosh p/2] -1 [2 cosh q/2] -1/2 Statistical Mechanics Approach N 3/2 & Airy Easily(!) Reproduced Besides, Large N with k Fixed

Sum Over Permutations σ ∊ S N (-1) σ = (-1) #{Intersections} Statistical Mechanics σ (1→2→3→) (4→5→) Tr ρ 3 Tr ρ 2

Sum Over Permutations σ ∊ S N ⇓ Sum Over Conjugacy Classes σ ~ σ' ⇔ ∃ τ σ' = τ - 1 σ τ Characterized by Partition 1 m 1 2 m 2 3 m 3 ・ ・ ・ (-1) σ' = (-1) σ : Independent Of Representative Statistical Mechanics σ τ -1 τ (4→1→5→) (2→3→)

Statistical Mechanics Z(N) = (N!) -1 ∑ σ (-1) σ ∫ ∏ i dq i 〈 q i |ρ|q σ(i) 〉 ⇓ Z(N) = (N!) -1 ∑' {m j } (phase) x (combi) x ∏ j (Tr ρ j ) m j Sum ∑' : Sum under Constraint ∑ j j m j = N (combi) = N! / [∏ j m j ! j m j ] (phase) = ∏ j (-1) (j-1)m j Z(N) = ∑' {m j } ∏ j (-1) (j-1)m j (Tr ρ j ) m j / [m j ! j m j ]

A Check N! = ∑' {m j } N! / [∏ j m j ! j m j ] ⇕ 1 = ∑' {m j } ∏ j=1 ∞ 1 / [m j ! j m j ] To Lift Constraint, Generating Function ∑ N=0 ∞ ∑' {m j } ∏ j=1 ∞ z N / [m j ! j m j ] = ∏ j=1 ∞ ∑ m j =0 ∞ (z j /j) m j / m j ! = exp ∑ j=1 ∞ z j /j = 1 / (1-z)

Grand Canonical Partition Function To Lift Constraint, Grand Partition Funcation Ξ(z) = exp J(z) = ∑ N=0 ∞ Z(N) z N J(z) = - ∑ j=1 ∞ Tr ρ j (-z) j / j = Tr log (1 + z ρ) Ξ(z) = det (1 + z ρ) Chemical Potential z = e μ Back to Canonical Partition Function Z(N) = ∳ dz/(2πi) e J(z) / z N+1

Approximation Thermodynamic Limit ρ(E) = dn(E)/dE J(μ) = ∫ dE ρ(E) log (1 + e μ-E ) Saddle Point Approximation exp F(N) = Z(N) ≈ ∫ dμ e J(μ)-μN N = ∂J/∂μ ⇒ μ ≈ μ*(N) F(N) ≈ J(μ*) - μ*N

Monomial Behavior Thermodynamic Limit n ≈ E s ρ ≈ E s-1 J ≈ Li s+1 (-e μ ) ≈ μ s+1 Saddle Point Approximation N ≈ μ s F ≈ μ s+1 ≈ N (s+1)/s

Application to Fermi Gas Fermi Gas n(E) = 8E 2 /2π ℏ = (2/π 2 k) E 2 s = 2 2E2E 2E2E q p log(2 cosh q/2) + log(2 cosh p/2) = E |q|+|p|= 2E N 3/2

WKB Analysis ℏ (=2πk) -Perturbation Systematic Expansion in e -2μ ~ Exp[-π√ 2Nk ] J (μ) = J pert (μ) + J np (μ) J pert (μ) = C k μ 3 /3 + B k μ + A k J np (μ) = ∑ l=1 ∞ ( α (l) μ 2 + β (l) μ + γ (l) ) e -2lμ Quadratic Prefactor (Linearity in "log[2coshq/2] ~ q" ) (α (l), β (l), γ (l) ) Determined in ℏ -Perturbation

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

World Records of Exact Values [Hatsuda-M-Okuyama 2012/07] N max = 9 for k=1 [Putrov-Yamazaki 2012/07] N max = 19 for k=1 [Hatsuda-M-Okuyama 2012/11] N max = 44 for k=1 N max = 20 for k=2 N max = 18 for k=3 N max = 16 for k=4 N max = 14 for k=6

Sample (for k=1) Z(1) = 1/4 Z(2) = 1/16π Z(3) = (π-3)/2 6 π Z(4) = (-π 2 +10)/2 10 π 2 Z(5) = (-9π 2 +20π+26)/2 12 π 2 Z(6) = (36π π 2 +78)/ π 3 Z(7) = (-75π π π-126)/2 16 3π 3 Z(8) = (1053π π π )/ π 4 Z(9) = (5517π π π π+4140)/ π 4

Method: Factorization ρ (q 1,q 2 ) = E (q 1 ) E (q 2 ) [M (q 1 ) + M (q 2 ) ] -1 ⇓ ρ n (q 1,q 2 ) = Σ m (-1) m [ρ m E] (q 1 ) [ρ n-1-m E] (q 2 ) x [M (q 1 ) - (-1) n M (q 2 ) ] -1 [Tracy-Widom]

Method: Hankel Matrix Density Matrix ρ: Isospectral to Hankel Matrix ρ ≈ = A Magic Formula For Hankel Matrix ρ 0 0 ρ 1 0 ρ 2 0 ・ 0 ρ 1 0 ρ 2 0 ρ 3 ・ ρ 1 0 ρ 2 0 ρ 3 0 ・ 0 ρ 2 0 ρ 3 0 ρ 4 ・ ρ 2 0 ρ 3 0 ρ 4 0 ・ 0 ρ 3 0 ρ 4 0 ρ 5 ・ ・ ・ ・ ・ ρ ρ - det (1+zρ - ) / det (1-zρ + ) = [(1-zρ + ) -1 E + ] 0 / [E + ] 0 [Hatsuda-M-Okuyama]

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Strategy: Plot & Fit Grand Potential J (μ) = log[ 1 + ∑ N=1 N max Z (N) e μN ] J (μ) vs J pert (μ) (J (μ) -J pert (μ) )/e -4μ/k vs α 1 μ 2 +β 1 μ+γ 1 (J (μ) -J pert (μ) -J np(1) (μ) )/e -8μ/k vs α 2 μ 2 +β 2 μ+γ 2 (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -12μ/k vs α 3 μ 2 +β 3 μ+γ 3 ・・・

k=1 (J (μ) -J pert (μ) )/e -4μ (J (μ) -J pert (μ) -J np(1) (μ) )/e -8μ J(μ)J(μ) (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -12μ

k=2 (J (μ) -J pert (μ) )/e -2μ (J (μ) -J pert (μ) -J np(1) (μ) )/e -4μ J(μ)J(μ) (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -6μ

k=3 (J (μ) -J pert (μ) )/e -4μ/3 (J (μ) -J pert (μ) -J np(1) (μ) )/e -8μ/3 J(μ)J(μ) (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -4μ

k=6 (J (μ) -J pert (μ) )/e -2μ/3 (J (μ) -J pert (μ) -J np(1) (μ) )/e -4μ/3 J(μ)J(μ) (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -2μ

k=4 (J (μ) -J pert (μ) )/e -μ (J (μ) -J pert (μ) -J np(1) (μ) )/e -2μ J(μ)J(μ) (J (μ) -J pert (μ) -J np(1) (μ) -J np(2) (μ) )/e -3μ

Oscillatory Behavior!! Original Definition of Grand Potential e J(μ) = 1 + ∑ N=1 ∞ Z (N) e -μN Periodic in μ = μ + 2πi But, No More in J pert (μ) etc.

To Remedy the 2πi-Periodicity 2πi-Periodic Grand Potential exp[J (μ) ] = ∑ N=-∞ ∞ exp[J naive (μ+2πiN) ] J naive (μ) = J pert (μ) + J np (μ) J (μ) = J naive (μ) + J osc (μ) Results: J osc (μ) = 2 Cos[C k μ 2 + B k - 8/3k] e -8μ/k +...

No Oscillations in Partition Function Back to Canonical Partition Function Z(N) = ∳ dz/(2πi) e J(z) / z N+1 No J osc (μ) After Extending Integral Range Z(N) = ∫ -πi πi dμ/(2πi) e J(μ)-μN = ∫ -∞ ∞ dμ/(2πi) e J naive (μ)-μN

Short Discussions General in All Models of Statistical Mechanics - 2πi Periodicity in Grand Potential - But Not in Its Perturbative Expansion Newly Found? " グラフで見る大ポテンシャル "

Results from Fitting J k=1 (μ) = [(4μ 2 +μ+1/4)/π 2 ]e -4μ + [-(52μ 2 +μ/2+9/16)/(2π 2 )+2]e -8μ + [(736μ μ/3+77/18)/(3π 2 )-32]e -12μ +... J k=2 (μ) = [(4μ 2 +2μ+1)/π 2 ]e -2μ + [-(52μ 2 +μ+9/4)/(2π 2 )+2]e -4μ + [(736μ μ/3+154/9)/(3π 2 )-32]e -6μ +... J k=3 (μ) = [4/3]e -4μ/3 + [-2]e -8μ/3 + [(4μ 2 +μ+1/4)/(3π 2 )+20/9]e -4μ +... J k=4 (μ) = [1]e -μ + [-(4μ 2 +2μ+1)/(2π 2 )]e -2μ + [16/3]e -3μ +... J k=6 (μ) = [4/3]e -2μ/3 + [-2]e -4μ/3 + [(4μ 2 +2μ+1)/(3π 2 )+20/9]e -2μ +... up to 7-instanton (J osc (μ) Abbreviated)

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Schematically J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3)

Worldsheet Instanton From Top String Implication from Topological Strings J k WS (μ) = ∑ m=1 ∞ d k (m) e -4mμ/k Multi-Covering Structure d k (m) = ∑ g ∑ n|m (-1) m/n N g n /n (2 sin[2πn/k]) 2g-2 Gopakumar-Vafa Invariant on F 0 =P 1 xP 1 N g n

Match with Topological String? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3)

Match with Topological String? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3) : Match : Divergent : Not-Match

First Guess Membrane Instanton & Worldsheet Instanton, Same Origin in M-theory d k (m) e -4mμ/k = (divergence) + [#μ 2 +#μ+#] e -2lμ Around k = 2m/l Correctly Speaking,...

Cancellation of Divergences? J k=1 (μ) = [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -8μ + [#μ 2 +#μ+#]e -12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e -2μ + [#μ 2 +#μ+#]e -4μ + [#μ 2 +#μ+#]e -6μ +... J k=3 (μ) = [#]e -4μ/3 + [#]e -8μ/3 + [#μ 2 +#μ+#]e -4μ +... J k=4 (μ) = [#]e -μ + [#μ 2 +#μ+#]e -2μ + [#]e -3μ J k=6 (μ) = [#]e -2μ/3 + [#]e -4μ/3 + [#μ 2 +#μ+#]e -2μ +... WS(1) WS(2) WS(3) MB(1) MB(2)

Cancellation of Divergence WS3 WS4 WS2 WS1 MB1 MB2 MB3 MB4 Worldsheet m-Instanton [sin 2πm/k] -1 Membrane l-Instanton [sin πlk/2] -1 k=1 k=6 k=2 k=5 k=3 k=4

More Dynamical Figure WS3 WS4 WS2 WS1 MB1 MB2 MB3 MB4 Worldsheet m-Instanton [sin 2πm/k] -1 Membrane l-Instanton [sin πlk/2] -1 k=1 k=6 k=2 k=5 k=3 k=4

1-Membrane Instanton Vanishing in k=odd Canceling Divergence Matching the WKB data a k (1) = -4(π 2 k) -1 cos[πk/2] b k (1) = 2π -1 cot[πk/2] cos[πk/2] c k (1) =...

How About ? (l, m) Bound State ? e - l x 2μ - m x 4μ/k Ex: e -3μ Effects in k=4 Sector From Both (0,3) & (1,1) But No Information on Bound States Yet.

2-Membrane Instanton Cancellation of Divergence in (2,0)+(0,2m+1) [Calvo-Marino] a k (2) =... b k (2) =... c k (2) =... m l k=1 k=3

Bound States (1,m)? Cancellation of Divergence in (2,0)+(1,m)+(0,2m) m l k=2 k=4

(1,m) Bound States Cancellation of Divergence in (2,0)+(1,m)+(0,2m) Match with (1,1)+(0,3) in k=4 Sector,... (1,m) Bound States J k (1,m) (μ) =... = a k (1) d k (m) e -2μ-4mμ/k

More Bound States Similarly, (2,m) Bound States J k (2,m) (μ) = (a k (2) +(a k (1) ) 2 /2) d k (m) e -4μ-4mμ/k Match with (2,2)+(0,5) in k=3,... (3,m) Bound States J k (3,m) (μ) = (a k (3) +a k (2) a k (1) +(a k (1) ) 3 /6) d k (m) e -6μ-4mμ/k

All Bound States Finally J k (l,m) (μ) = ∑ (a k (l 1 ) ) n 1 /(n 1 )!... (a k (l L ) ) n L /(n L )! x d k (m) e -2lμ-4mμ/k Sum Over n 1 l n L l L = l ∑(a) n /(n)! ⇒ Exp[a] ??

To Summarize Originally J (μ) = J pert (μ) + J MB (μ) + J WS (μ) + J bnd (μ) J pert (μ) = #μ 3 + #μ + # J MB (μ) = ∑ l>0 J MB(l) (μ) = ∑ l>0 (#μ 2 + #μ + #) e -2lμ J WS (μ) = ∑ m>0 J WS(m) (μ) = ∑ m>0 # e -4mμ/k J bnd (μ) = ∑ l>0,m>0 J (l,m) (μ)

Effective Chemical Potential μ eff = μ + # ∑ l a k (l) e -2lμ Grand Potential J (μ) = J pert (μ eff ) + J' MB (μ eff ) + J WS (μ eff ) J' MB (μ eff ) = ∑ l>0 (#μ eff + #) e -2lμ eff Bound States in Effective WS Instanton Membrane Instanton in Linear Functions

Contents 1.Motivation 2.Fermi Gas 3.Exact Results 4.NonPerturbative Effects 5.As Various Instantons (Skipped) 6.Further Directions

Further Direction [Work in Progress] Generality of Cancellation?? - More Examples Wilson Loops? ABJ Extensions? General Matrix Model Terminology Thank You For Your Attention.