FFAG’08 04.09.2008J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL.

Slides:



Advertisements
Similar presentations
, IC LondonJ. Pasternak Fast circular accelerators for future muon and proton beams J. Pasternak, Imperial College / RAL STFC.
Advertisements

A 10 GeV, 4 MW, FFAG, Proton Driver at 50 Hz G H Rees, RAL.
Proton / Muon Bunch Numbers, Repetition Rate, RF and Kicker Systems and Inductive Wall Fields for the Rings of a Neutrino Factory G H Rees, RAL.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
FFAG Workshopfermilab April 2005 f Summary: FFAG WORKSHOP nonscaling electron model muon FFAGs C. Johnstone Fermilab.
ALPHA Storage Ring Indiana University Xiaoying Pang.
PAMELA Contact Author: CONFORM is an RCUK-funded Basic Technology Programme PAMELA: Concepts Particle Accelerator for MEdicaL Applications K.Peach(JAI,
Options for a 50Hz, 10 MW, Short Pulse Spallation Neutron Source G H Rees, ASTeC, CCLRC, RAL, UK.
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
FFAG Concepts and Studies David Neuffer Fermilab.
, WP1 Meeting, RAL J. Pasternak Status and Recent Progress in the Muon FFAG Designs for the NF J. Pasternak, Imperial College, London / RAL STFC.
S.J. Brooks RAL, Chilton, OX11 0QX, UK Options for a Multi-GeV Ring Ramping field synchrotron provides fixed tunes and small.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Proton Driver Status ISIS Accelerator Division John Thomason.
Brookhaven Science Associates U.S. Department of Energy AGS Upgrade and Super Neutrino Beam DOE Annual HEP Program Review April 27-28, 2005 Derek I. Lowenstein.
Source Group Bethan Dorman Paul Morris Laura Carroll Anthony Green Miriam Dowle Christopher Beach Sazlin Abdul Ghani Nicholas Torr.
2002/7/02 College, London Muon Phase Rotation at PRISM FFAG Akira SATO Osaka University.
2002/7/04 College, London Beam Dynamics Studies of FFAG Akira SATO Osaka University.
Y. Mori Kyoto/KEK FFAG C. OH FFAG: Fixed Field Alternating Gradient Strong focusing(AG focusing, phase focusing) Like synchrotron, but fixed field Moving.
FFAG for next Light Source Alessandro G. Ruggiero Light Source Workshop January 24-26, 2007.
A 3 Pass, Dog-bone Cooling Channel G H Rees, ASTeC, RAL.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Advanced Accelerator Design/Development Proton Accelerator Research and Development at RAL Shinji Machida ASTeC/STFC/RAL 24 March 2011.
, EUROnu Meeting, Strasbourg J. Pasternak Status and recent progress on muon IDS-FFAG J. Pasternak, Imperial College, London / RAL STFC Work.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
JAI-Diamond Joint Seminar 07/06/20071 Development of Non-Scaling FFAG : EMMA & PAMELA Takeichiro Yokoi J. Adams Institute Oxford University.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
Study of Compact Medical FFAG Accelerators - Radial Sector Type - T. Misu, Y. Iwata, A. Sugiura, S. Hojo, N. Miyahara, M. Kanazawa, T. Murakami, and S.
Acceleration System Comparisons S. Machida ASTeC/RAL September, 2005, ISS meeting at CERN.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
J. Pasternak First Ideas on the Design of the Beam Transport and the Final Focus for the NF Target J. Pasternak, Imperial College London / RAL STFC ,
Part I Optics. FFAG is “Fixed Field Alternating Gradient”. Ordinary synchrotron needs ramping magnets to keep the orbit radius constant. FFAG has Alternating.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
WG 2 Organizations ……. Items …. Proton driver (ex. For NuFact) Proton(hadron) accelerator (ex ELIT) Electron accelerator (ex.SBIR)
NUFACT’05 24-June-2005 H. Schönauer CERN The typical approaches to Muon acceleration at higher energies: Recirculating linacs Scaling FFAG’s : constant.
Proton FFAG Accelerator R&D at BNL Alessandro G. Ruggiero Brookhaven National Laboratory Alessandro G. Ruggiero Brookhaven National Laboratory.
FFAG Studies at RAL G H Rees. FFAG Designs at RAL Hz, 4 MW, 3-10 GeV, Proton Driver (NFFAGI) Hz,1 MW, GeV, ISIS Upgrade (NFFAG) 3.
WG2 (Proton FFAG) Summary G.H. Rees. Proton Driver Working Group  Participants: M. Yashimoto, S. Ohnuma, C.R. Prior, G.H. Rees, A.G. Ruggiero  Topics:
IDS-NF Accelerator Baseline The Neutrino Factory [1, 2] based on the muon storage ring will be a precision tool to study the neutrino oscillations.It may.
FFAG Nonscaling FFAGs for Hadron Therapy C. Johnstone, Fermilab FFAG08 Sept 1-5, 2008 University of Manchester Manchester, U.K. Fermilab.
4 MW, 50 Hz, 10 GeV, 1 ns (rms), FFAG Proton Driver Study G H Rees, RAL.
3 GeV, 1.2 MW, RCS Booster and 10 GeV, 4.0 MW, NFFAG Proton Driver G H Rees, ASTeC, RAL.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Parametrisation of PRISM Ring and Design Options J. Pasternak Imperial College London/RAL STFC PRISM-FFAG Task Force phone meeting,
FFAG’07 GrenobleJ. Pasternak, LPSC Grenoble Medical Spiral FFAG (RACCAM Ring) J. Pasternak, LPSC Grenoble 1.Motivations for medical FFAG. 2.Principle of.
Accumulator & Compressor Rings with Flexible Momentum Compaction arccells MAP 2014 Spring Meeting, Fermilab, May 27-31, 2014 Y. Alexahin (FNAL APC)
ADSR Inst.July 2009 From PAMELA to ADSR, T.Yokoi From PAMELA to ADSR Takeichiro Yokoi (JAI)
Introduction to NS-FFAGs and EMMA Rob Edgecock STFC Rutherford Appleton Laboratory.
, UKNF Meetin, Imperial College J. Pasternak Status and Recent Progress in the Muon FFAG Designs J. Pasternak, Imperial College, London / RAL.
, IDS Meeting, Fermilab J. Pasternak Challenges of muon FFAG: injection/extraction, beam dynamics and injection/extraction hardware design studies.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
A Compact FFAG for Radioisotope Production D. Bruton R. Barlow, R. Edgecock, and C.J. Johnstone.
PSI, Zurich February 29 – March Session classification : Accelerator Concepts Tuesday, March 1, 2016 Introduction Vyacheslav Yakovlev Fermilab,
Nonscaling FFAG design and EMMA experiment
Towards a Common Proton Driver for a Neutrino Factory
J-PARC main ring lattice An overview
for the Neutrino Factory
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
Jeffrey Eldred, Sasha Valishev
Proton Drivers Leo jenner – Joint Fermi / Imperial
Muon Acceleration in a Neutrino Factory
FFAG Accelerator Proton Driver for Neutrino Factory
LHC (SSC) Byung Yunn CASA.
Electron Rings Eduard Pozdeyev.
A Design Study of a Compressor ring for
Negative Momentum Compaction lattice options for PS2
Negative Momentum Compaction lattice options for PS2
Alternative Ion Injector Design
Presentation transcript:

FFAG’ J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL

FFAG’ J. Pasternak, IC London/RAL 1.Introduction 2.Lattice studies for PAMELA 3.Tune stabilization 4.Towards high intensity FFAG proton driver.

FFAG’ J. Pasternak, IC London/RAL Proton acceleration is very important: Medical applications neutrino factory super beam beta beam neutron production radioactive beam facility muon collider antiproton production ADSR systems etc.

FFAG’ J. Pasternak, IC London/RAL RACCAM Project N 10 k 5.15 Spiral angle 53.5° R max 3.46 m R min 2.8 m (Qx, Qy) (2.77, 1.64) B max 1.7 T p f 0.34 Injection energy 6-15 MeV Extraction energy MeV h 1 RF frequency 1.9 – 7.5 MHz Bunch intensity 3  10 9 protons Change of energy takes 0.1 s!

FFAG’ J. Pasternak, IC London/RAL Nonlinear Nonscaling FFAGs (NNSFFAG -?) were proposed by G. Rees. They use nonlinear fields for various reasons, but off-momentum orbits do not scale. Motivations for medical Nonlinear Nonscaling design: Reduction of orbit excursion with respect to scaling designs – in order to achieve energy variability by kicker system and reduce the magnet cost Acceleration with (quasi)constant tunes in order to allow for low RF gradient. Acceleration based on MA cavities with modest gradient. Nonliner fields are used to control tune variation. Lattice studies for PAMELA

FFAG’ J. Pasternak, IC London/RAL Basic assumptions for PAMELA Space needed for extraction sepum (1 T) defines length of long straight Doublet to limit number of magnets and allow for long straight Both magnets – rectangular of equal length Short ss fixed to 0.1 m Magnet packing factor fixed at 0.4 Lattice of non-scaling type (negative deflection in F) Chromatic correction to limit tune excursion below 0.5 per ring by introducing multipoles – NONLINEAR NON-SCALING FFAG Phase advance per cell > 90° for H and <90° for V Free parameters: cell length, number of cells, negative deflection Orbit excursion ~ External magnet radius (??)

FFAG’ J. Pasternak, IC London/RAL Preliminary proton (carbon) lattice parameters N 24 L cell 1.9 m L magnet 0.38 m L straigh 1.04 m Orbit excursion 0.22 m R 7.25 m (Qx, Qy)/cell (0.26, 0.12) B max 1.8 T (normal conducting) p f 0.4 Injection energy 17 MeV (4.2 MeV/n) Extraction energy 250 MeV (68.3 MeV/n)

FFAG’ J. Pasternak, IC London/RAL Tune stabilization - example Parameters: Number of cells 12 Lattice type DFD triplet (Q H, Q V ) (3.8, 1.3) R 4.8 m Drift Length 1 m Extraction septum field 0.8 T Protons MeV D magnet – positive bending F magnet – negative bending

FFAG’ J. Pasternak, IC London/RAL Linear optics (2) Betatron functions at MeV Dispersion

FFAG’ J. Pasternak, IC London/RAL Chromaticity correction Magnetic field m T

FFAG’ J. Pasternak, IC London/RAL Chromaticity correction Magnetic field m T

FFAG’ J. Pasternak, IC London/RAL Chromaticity correction (3) Orbits without correction Orbits with correction

FFAG’ J. Pasternak, IC London/RAL Beam Dynamics x, m py y, m px Vertical unnormalized DA at Mev 1900  m Horizontal unnormalized DA at Mev 780  m

FFAG’ J. Pasternak, IC London/RAL Motivations for FFAG proton driver for Neutrino Factory Very high repetition rate – 100 Hz or more Constant magnetic field Simple operation Cost effective Magnet and RF technology known FFAG can boost linac energy (by factor 3-4 in momentum) Main parameters of neutrino factory proton driver: 4 MW 50 Hz 5 – 10 GeV 3-5 bunches at 2 ns (rms)

FFAG’ J. Pasternak, IC London/RAL Current scenario – G. Rees: limited to 50 Hz 2 rings low injection energy complicated lattice cell (5 magnets) RCS 50 Hz 50 Hz, 3 GeV 200 MeV H - Linac NF Proton Driver (2) FFAG – 10 GeV

FFAG’ J. Pasternak, IC London/RAL NF Proton Driver (3) Alternative 1) 300 MeV H - Linac 2.5 GeV, 5 MW FFAG, 100 Hz Neutrino factory target, 4 MW, 50 Hz Neutron production target, 2.5 MW, 50 Hz RCS or FFAG, 10 GeV, 50 Hz Still 2 rings 100 – 200 Hz for booster FFAG operation possible

FFAG’ J. Pasternak, IC London/RAL 800 MeV H - Linac Neutrino factory target, 4 MW, 50 Hz, 5GeV 5 GeV, 5 MW FFAG, 100 Hz NF Proton Driver (4) Neutron production target, 2.5 MW, 50 Hz,2.5 GeV Now 1 FFAG ring! 100 – 200 Hz for booster FFAG operation possible Operation as an accumulator ring possible Alternative 2)

FFAG’ J. Pasternak, IC London/RAL Scaling or Non-scaling ? High intensity operation requires chromaticity close to zero -> scaling! But …non-scaling designs allow for smaller orbit excursion and simpler magnets. Nonlinear non-scaling, tune stabilized lattices may be a solution.

FFAG’ J. Pasternak, IC London/RAL Preliminary design parameters (alternative 1) N of cells 64 Lattice type dublet R 34.6 m (Qx, Qy)/cell (0.269, 0.19) B max 1.7 T Magnet packing factor 0.4 E GeV h 5 RF swing 4.5– 6.5 MHz Drift length 1.9 m  T 37.6

FFAG’ J. Pasternak, IC London/RAL Summary and future plans FFAGs are perfect machines for many applications! We need to compare a scaling designs with the non-scaling tune stabilized ones. Tune stabilization has to be studied in detail. Space charge simulations have to be performed. Possibility to introduce insertions has to be studied.