Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.

Slides:



Advertisements
Similar presentations
ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
Advertisements

Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
ASC XP-823 Error Field Correction and Long Pulse J.E. Menard, S.P. Gerhardt Part 1 Determine the source of, and optimal correction for, the observed n=3.
A. Kirk, 21 st IAEA Fusion Energy Conference, Chengdu, China, October 2006 Evolution of the pedestal on MAST and the implications for ELM power loadings.
A. Kirk, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004 The structure of ELMS and the distribution of transient power loads in MAST Presented.
Introduction to Spherical Tokamak
Fast Ion Driven Instabilities on NSTX E.D. Fredrickson, C.Z. Cheng, D. Darrow, G. Fu, N.N. Gorelenkov, G Kramer, S S Medley, J. Menard, L Roquemore, D.
Physics of fusion power
Physics of fusion power Lecture 8 : The tokamak continued.
Barbora Gulejová 1 of 10 PSI 2008 abstract 5/12/2007 SOLPS modelling of Type I ELMing H-mode on JET Barbora Gulejová, Richard Pitts, David Coster, Xavier.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
TITLE RP1.019 : Eliminating islands in high-pressure free- boundary stellarator magnetohydrodynamic equilibrium solutions. S.R.Hudson, D.A.Monticello,
9/20/04NSTX RESULTS REVIEW NSTX rtEFIT implementation progress results NSTX 2004 RESULTS REVIEW September 20&21, 2004 REAL-TIME EQUILIBRIUM RECONSTRUCTION.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
ITPA - IOS st Oct Kyoto E. Joffrin JET programme with the ILW in and relations with the IOS Joint experiments.
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
S.A. Sabbagh for NSTX Macrostability TSG Macrostability TSG Suggested FY-12 Milestones – Address key ReNeW issues for ST development 1) Assess sustained.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Mid-Run Assessment - ISD S. Kaye, D. Gates 10 May 2006.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
Physics of fusion power Lecture 10: tokamak – continued.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
Flows, Turbulence, and the Edge Plasma in NSTX C.E. Bush, S. Zweben, R. Maqueda, W. Davis, D. Johnson, R. Kaita, H. Kugel, L. Roquemore, G. Wurden and.
Interplay between magnetic topology, density fluctuations and confinement in high-  Wendelstein 7-AS plasmas Nils P. Basse 1 Association EURATOM – Risø.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
Physics of fusion power Lecture 9 : The tokamak continued.
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
F. Koechl (1) IOS ITPA Meeting, Kyoto Free boundary simulations of the ITER baseline scenario and its variants F. Koechl, M. Mattei, V. Parail,
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
Integration and Plasma Control D.A. Gates, M.G. Bell NSTX 5-Year Plan June 30-July 2, 2003.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
Integrated Operation Scenarios ITPA Remaining duties ITPA CC meeting & IEA/ITPA JE planning meeting –12 – 14 (15) December 2011, Cadarache –Ide, Sips and.
Progress on NSTX towards steady state at low aspect ratio D. A. Gates, Princeton Plasma Physics Laboratory on behalf of the NSTX Research Team Supported.
Session I-B – Overview Talks Lithium in Magnetic Confinement Experiments S. MirnovLi collection experiments on T-11M and T-10 in framework of Li closed.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
DIVERTOR INVESTIGATIONS ON NSTX-U LEADING TO FNSF Mike Kotschenreuther Brent Covele Swadesh Mahajan Prashant Valanju Jonathan Roeltgen Zhong-Ping Chen.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
Monday Physics Meeting, 05/05/081 XP-815 – Characterization of divertor heat flux width and mid-plane SOL widths J-W. Ahn 1, R. Maingi 2, J. Boedo 1, V.
Low-density Start-up D. Mueller, M. Bell, S. Gerhardt, J. Menard, R. Raman, S. Sabbagh NSTX FY12 low density discussion: May 12, 2011.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
NSTX-U Run Planning Guidance for 2015 NSTX-U Research Forum 1 FY2015 (and 2016) research milestones will guide prioritization of eXperimental Proposal.
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
T. Biewer, Sep. 21 st, 2004 NSTX Results Review of 11 Dependence of Edge Flow on Magnetic Configuration in NSTX T.M. Biewer, R.E. Bell, D. Gates,
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
PEER Review of Coil Tolerances and Trim Coil Requirements plus Magnetic Material in Test Cell April 19, 2004 Art Brooks.
Construction and Status of Versatile Experiment Spherical Torus at SNU
Presentation transcript:

Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a critical issue for ITER Is there an alternative to the “conventional” poloidal divertor? –Divertors are used because they are associated with the H-mode, but –H-mode can be obtained reliably without an X-point on the boundary e.g. JET in its early investigation of H-modes (1980s) – best  E Critical factor seems to be high magnetic shear in the edge e.g. H-mode (“pesky” - RJG) in TFTR with I p rampdown, high  P Rebut has suggested that the “X-point limiter” would a better approach (e.g. Alfvén prize address at EPS Conference, Rome, 2006) –There is a separatrix but it is just outside the LCFS –Contact point of limiter with LCFS is close to and just inside the X-point –Flux expansion near poloidal field null and tangential contact spread heat load Experiment in NSTX would be relevant both to ITER and ST development

Discharges Produced with X-Point Close to Inboard Divertor Plate , 0.5s Example: 1MA, 0.45T, 4MW NBI –H-mode transition at 0.15s –From XP-820 “EBW coupling” on 4/4/07 Advantageous to bring contact point of LCFS onto outer lower divertor plate –Avoid loading edge of inner plate –Discharges would contact at proposed location of LLD –Triangularity will be lower

Use PF2 Coils Rather than PF1A to Produce X-Point Filaments produce reasonable approximation to reference shot With same plasma current distribution, shifting divertor current from PF1AL to PF2L produces close to desired condition Increasing PF2L (and PF2U) raises X-point above outboard plate

Experiment Expected to Require ~1 Run Day Develop target at 1MA, 0.45T, 4MW using PF2 coils rather than PF1A –Use rtEFIT control of outer gap and preprogrammed I PF2L /I p ratio –May need to use PF1A coils to compensate for OH fringing field Scan X-point through outboard limiter surface –Adjust HFS gas to promote H-mode transition Uncertainty is state of “conditioning” of new contact area –Repeat shots to assess whether this is evolving Assess H-mode threshold and confinement scaling in NB power scan –Assemble full kinetic data for analysis –Measure heat loading on both divertors Consider repeating some conditions when LITER operating Experiment provides proposed X-point height scan (K-C. Lee) Also provides useful data for milestone: R(08-3) Study variation and control of heat flux in SOL

Execution Plan 1.Rerun shot (1.0MA) with 2 NBI sources & compare H-mode access and performance. (1) 2.If the flattop is too short, decrease the plasma current to 0.9MA (shot ) (1) 3.Reduce PF1AL, PF1AU/IP current ratio in the flattop progressively to zero, and set the ratio of PF2L to plasma current to 4kA/MA and PF2U to 2.5kA/MA. Run a shot with 2 NB sources. If necessary adjust outer boundary control parameters. Assess need for small programmed PF1A currents to compensate for the time-varying OH leakage field. (3) 4.Adjust the vertical position (downward) and, if necessary reduce the PF2L current control ratio to 3.5kA/MA, to bring the X-point close to, and if possible, through the lower divertor plate. (3) 5.Decide whether to lower PF2L current control ratio further to 3kA/MA depending on equilibrium shape achieved and plasma performance. (3 additional shots possible) 6.At lowest X-point achieved, assess whether conditioning of the new contact point is occurring (3) 7.When conditions stabilize, assess H-mode access (L-H and H-l) either by adding source C at 0.12s (as in reference shot) or by delaying the second NB source (B) by 50ms on successive shots. (2) 8.Assess whether to apply PWM to the final source to determine the threshold power more finely. (4) 9.Return to the original shape at step 2 and perform the same assessment of H-mode access. (3)