MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov,

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

TPAC: A 0.18 Micron MAPS for Digital Electromagnetic Calorimetry at the ILC J.A. Ballin b, R.E. Coath c *, J.P. Crooks c, P.D. Dauncey b, A.-M. Magnan.
SiW ECAL R&D in CALICE Nigel Watson Birmingham University For the CALICE Collab. Motivation CALICE Testbeam Calibration Response/Resolution MAPS Option.
A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
CALICE-UK and the ILD detector Nigel Watson (Birmingham Univ.) For the CALICE UK group  Motivation  Testbeam  Particle Flow  Physics Studies  MAPS.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
A preliminary analysis of the CALICE test beam data Dhiman Chakraborty, NIU for the CALICE Collaboration LCWS07, Hamburg, Germany May 29 - June 3, 2007.
17 May 2007LCWS analysis1 LCWS physics analysis work Paul Dauncey.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
High Granularity ECAL Study Using SLIC Nigel Watson Introduction Software Tools Framework Results Summary [Simulations by J.Lilley, Birmingham/Durham summer.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Calibration, simulation and test-beam characterisation of Timepix hybrid-pixel readout assemblies with ultra-thin sensors International Workshop on Future.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Development of Advanced MAPS for Scientific Applications
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
7 Nov 2007Paul Dauncey1 Test results from Imperial Basic tests Source tests Firmware status Jamie Ballin, Paul Dauncey, Anne-Marie Magnan, Matt Noy Imperial.
7 Apr 2010Paul Dauncey1 Tech Board: DECAL beam test at DESY, March 2010 Paul Dauncey.
SiW ECAL Technological Prototype Test beam results Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration.
MAPS for a “Tera-Pixel” ECAL at the International Linear Collider J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
Lepton Collider Increased interest in high energy e + e - collider (Japan, CERN, China) STFC funded us for £75k/year travel money in 2015 and 2016 to re-
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
18 Sep 2008Paul Dauncey1 The UK MAPS/DECAL Project Paul Dauncey for the CALICE-UK MAPS group.
16 Sep 2009Paul Dauncey1 DECAL beam test at CERN Paul Dauncey for the CALICE-UK/SPiDeR groups: Birmingham, Bristol, Imperial, Oxford, RAL.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 1 Paul Dauncey Imperial College London.
J. Crooks STFC Rutherford Appleton Laboratory
CLICdp achievements in 2014 and goals for 2015 Lucie Linssen, CERN on behalf of the CLICdp collaboration CLIC workshop, January 30 th
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
Advanced Pixel Architectures for Scientific Image Sensors Rebecca Coath, Jamie Crooks, Adam Godbeer, Matthew Wilson, Renato Turchetta CMOS Sensor Design.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
26 Jan 2010Paul Dauncey1 TPAC papers Paul Dauncey.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
18 Sep 2008Paul Dauncey 1 DECAL: Motivation Hence, number of charged particles is an intrinsically better measure than the energy deposited Clearest with.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
CMOS Pixels Sensor Simulation Preliminary Results and Plans M. Battaglia UC Berkeley and LBNL Thanks to A. Raspereza, D. Contarato, F. Gaede, A. Besson,
9 Sep 2008Paul Dauncey1 MAPS/DECAL Status Paul Dauncey for the CALICE-UK MAPS group.
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
A MAPS-based readout of an electromagnetic calorimeter for the ILC
Update on DECAL studies for future experiments
Calorimetry for a CLIC experiment
DECAL beam test at CERN Paul Dauncey for the CALICE-UK/SPiDeR groups:
CALICE: Major Items Since September
Presentation transcript:

MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel, E.G.Villani (STFC-RAL) J.A.Ballin, P.D.Dauncey, A.-M.Magnan, M.Noy (Imperial) Y.Mikami, O.D.Miller, V.Rajovic, NKW, J.A.Wilson (Birmingham) SiD Workshop RAL Apr 2008

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS ECAL: basic concept How small? EM shower core density at 500GeV is ~100/mm 2 Pixels must be<100  100  m 2 Our baseline is 50  50  m 2 Gives ~10 12 pixels for ECAL – “Tera-pixel APS” How small? EM shower core density at 500GeV is ~100/mm 2 Pixels must be<100  100  m 2 Our baseline is 50  50  m 2 Gives ~10 12 pixels for ECAL – “Tera-pixel APS” Swap ~0.5x0.5 cm 2 Si pads with small pixels “Small” := at most one particle/pixel 1-bit ADC/pixel, i.e. Digital ECAL Effect of pixel size 50  m 100  m >1 particle/ pixel Incoming photon energy (GeV) Weighted no. pixels/event

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr New since Jan. workshop?  What is it sensible to show?  Results from testbeam??  Hints that we are starting to understand what is going on?  JB evt display? Layer-layer correlation plots a la TM?  Etc?

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr CALICE INMAPS TPAC1 Architecture-specific analogue circuitry 4 diodes Ø 1.8  m First round, four architectures/chip (common comparator+readout logic) INMAPS process: deep p-well implant 1 μm thick under electronics n-well, improves charge collection 0.18  m feature size

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr The CALICE TPAC1  50x50  m cell size  Comparator per pixel  Capability to mask individual pixels  4 Diodes for ~uniform response w.r.t threshold  13 bit time stamp (>8k bunches individually tagged)  Hit buffering for entire bunch train (~ILC occupancy)  Threshold adjustment for each pixel  Usage of INMAPS (deep-p well) process [Marcel Stanitzki]

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr million transistors pixels; 50 microns; 4 variants Sensitive area 79.4mm 2 Four columns of logic + SRAM  Logic columns serve 42 pixels  Record hit locations & timestamps  Local SRAM  11% deadspace due to readout/logic Data readout  Slow (<5 MHz)  Current sense amplifiers  Column multiplex  30 bit parallel data output TPAC1 overview “region” “Group” (region=7 groups of 6 pixels)

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Attention to detail 2: beam background  Beam-beam interaction by GUINEAPIG  LDC01sc (Mokka)  2 machine scenarios studied :  500 GeV baseline,  1 TeV high luminosity purple = innermost endcap radius 500 ns reset time  ~ 2‰ inactive pixels [O.Miller] Study to be repeated in SiD01 Verify optimisation Study to be repeated in SiD01 Verify optimisation X (mm) y (mm)

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Progress with sensor tests Work ongoing to test unformity of threshold and gain Report today on testbeam

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr SiD 16mm 2 area cells ZOOM 50  50 μm 2 MAPS pixels Tracking calorimeter

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Physics simulation 0.5 GeV MPV = 3.4 keV σ = 0.8 keV 5 GeV MPV = 3.4 keV σ = 0.8 keV 200 GeV MPV = 3.4 keV σ = 0.8 keV Geant4 energy of simulated hits E hit (keV)  MAPS geometry implemented in Geant4 detector model (Mokka) for LDC detector concept  Peak of MIP Landau stable with energy  Definition of energy: E  N pixels  Artefact of MIPS crossing boundaries  Correct by clustering algorithm  Optimal threshold (and uniformity/stability) important for binary readout Threshold (keV)  (E)/E 20 GeV photons

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Hit buffering for train

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr  Physics data rate low – noise dominates  Optimised diode for  Signal over noise ratio  Worst case scenario charge collection  Collection time Device level simulation Signal/noise 0.9 μm 1.8 μm 3.6 μm Distance to diode (charge injection point) Signal/Noise

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Attention to detail 1: digitisation [J.Ballin/A-M.Magnan] Digital ECAL, essential to simulate charge diffusion, noise, in G4 simulations

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr TestingTesting  Tested device-level simulations using laser-based charge diffusion measurements at RAL   1064, 532,355 nm,focusing < 2 μm, pulse 4ns, 50 Hz repetition, fully automated  Cosmics and source setup, Birmingham and Imperial, respectively.  Beam test at DESY, Dec  Analysis in progress  Expand work on physics simulations  Test performance of MAPS ECAL in ILD and SiD detector concepts  Emphasis on re-optimisation of particle flow algorithms  Cannot be done without specific, detailed simulation models... July: 1 st sensors delivered to RAL July: 1 st sensors delivered to RAL

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr pixels with analog output (A & B) 1 Pixel not active & read out (C) Used for  Measurement of charge spread  Cross-check device simulations  Analog front-end testing  Gain calibration (to be done) All results are PRELIMINARY A B C [Marcel Stanitzki] Analogue test pixels

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr A B C Area scanned by Laser Same design, but no deep p-well [Marcel Stanitzki] Without deep p-well

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr A B C Area scanned by Laser [Marcel Stanitzki] With deep p-well: I

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Pixel APixel B [Marcel Stanitzki] With deep p-well: II

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr  A Tera-Pixel ECAL is challenging  Benefits  No readout chips  CMOS is well-known and readily available  Ability to make thin layers  Current sources of concern  DAQ needs  Power consumption/Cooling System considerations

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr DAQ requirements  O(10 12 ) channels are a lot...  Physics rate is not the limiting factor  Beam background and Noise will dominate  Assuming 2625 bunches and 32 bits per Hit  10 6 Noise hits per bunch  ~O(1000) Hits from Beam background per bunch (estimated from GuineaPIG)  Per bunch train  ~80 Gigabit / 10 Gigabyte  Readout speed required 400 Gigabit/s  CDF SVX-II can do 144 Gigabit/s already

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Cooling and power  Cooling for the ECAL is a general issue  Power Savings due to Duty Cycle (1%)  Target Value for existing ECAL ASICS  4 µW/mm2  Current Consumption of MAPS ECAL:  40 µW/mm2 depending on pixel architecture  TPAC1 not optimized at all for power consumption  Compared to analog pad ECAL  Factor 1000 more Channels  Factor 10 more power  Advantage: Heat load is spread evenly

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr [Marcel Stanitzki] Thermal properties

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS testbeam  Desy Dec  Extremely tight schedule…  4 sensors, PMT coincidence trigger  3, 6 GeV e -  With/without tungsten pre-shower material  Threshold scans  USB_DAQ

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr PMT trigger

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Sensor setup in testbeam

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Concentrate on shapers

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr StrategyStrategy  Want to start with the highest purity sample we can  Scintillators behaviour “not optimal”  Ensure sensor hits genuine  Use clusters of hits initially, not single pixels  Can we match clusters between sensors?

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr ClusteringClustering

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer correlations: x

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer correlations: y

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer alignment

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr …and funding  Recognised as generic technology  Much interest to continue development of concept for ECAL  Including for SiD  …

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS summary  Concept of CMOS MAPS digital ECAL for ILC  Multi-vendors, cost/performance gains  New INMAPS deep p-well process (optimise charge collection)  Four architectures for sensor on first chips, delivered to RAL Jul 2007  Tests of sensor performance in progress: sources, charge diffusion, cosmics, testbeam  Physics benchmark studies, compare MAPS vs. analogue Si-W designs  In framework of SiD and IDC detector concepts

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr SummarySummary  MAPS ECAL: alternative to baseline design (analogue SiW)  Multi-vendors, cost/performance gains  New INMAPS deep p-well process (optimise charge collection)  Four architectures for sensor on first chips  Tests of sensor performance ongoing  Physics benchmark studies with MAPS ECAL to evaluate performance relative to standard analogue Si-W designs, for both SiD (and ILD) detector concepts  Future plans  Systematic studies of pixel to pixel gain and threshold variations  Absolute gain calibration  Second sensor…

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Backup slides…

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr The sensor test setup 5 dead pixels for logic : -hits buffering (SRAM) - time stamp = BX (13 bits) - only part with clock lines. 84 pixels 42 pixels Data format = 31 bits per hit 7 * 6 bits pattern per row Row index 1*1 cm² in total 2 capacitor arrangements 2 architectures 6 million transistors, pixels

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Architectures on ASIC1 PresamplerPreshaper Type dependant area: capacitors, and big resistor or monostable

Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr  Physics data rate low – noise dominates  Optimised diode for  Signal over noise ratio  Worst case scenario charge collection  Collection time. Device level simulation Using Centaurus TCAD for sensor simulation + CADENCE GDS file for pixel description Signal/noiseCollected charge 0.9 μm 1.8 μm 3.6 μm Distance to diode