MAPS ECAL Nigel Watson Birmingham University Technical Status Future Plans Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel, E.G.Villani (STFC-RAL) J.A.Ballin, P.D.Dauncey, A.-M.Magnan, M.Noy (Imperial) Y.Mikami, O.D.Miller, V.Rajovic, NKW, J.A.Wilson (Birmingham) SiD Workshop RAL Apr 2008
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS ECAL: basic concept How small? EM shower core density at 500GeV is ~100/mm 2 Pixels must be<100 100 m 2 Our baseline is 50 50 m 2 Gives ~10 12 pixels for ECAL – “Tera-pixel APS” How small? EM shower core density at 500GeV is ~100/mm 2 Pixels must be<100 100 m 2 Our baseline is 50 50 m 2 Gives ~10 12 pixels for ECAL – “Tera-pixel APS” Swap ~0.5x0.5 cm 2 Si pads with small pixels “Small” := at most one particle/pixel 1-bit ADC/pixel, i.e. Digital ECAL Effect of pixel size 50 m 100 m >1 particle/ pixel Incoming photon energy (GeV) Weighted no. pixels/event
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr New since Jan. workshop? What is it sensible to show? Results from testbeam?? Hints that we are starting to understand what is going on? JB evt display? Layer-layer correlation plots a la TM? Etc?
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr CALICE INMAPS TPAC1 Architecture-specific analogue circuitry 4 diodes Ø 1.8 m First round, four architectures/chip (common comparator+readout logic) INMAPS process: deep p-well implant 1 μm thick under electronics n-well, improves charge collection 0.18 m feature size
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr The CALICE TPAC1 50x50 m cell size Comparator per pixel Capability to mask individual pixels 4 Diodes for ~uniform response w.r.t threshold 13 bit time stamp (>8k bunches individually tagged) Hit buffering for entire bunch train (~ILC occupancy) Threshold adjustment for each pixel Usage of INMAPS (deep-p well) process [Marcel Stanitzki]
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr million transistors pixels; 50 microns; 4 variants Sensitive area 79.4mm 2 Four columns of logic + SRAM Logic columns serve 42 pixels Record hit locations & timestamps Local SRAM 11% deadspace due to readout/logic Data readout Slow (<5 MHz) Current sense amplifiers Column multiplex 30 bit parallel data output TPAC1 overview “region” “Group” (region=7 groups of 6 pixels)
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Attention to detail 2: beam background Beam-beam interaction by GUINEAPIG LDC01sc (Mokka) 2 machine scenarios studied : 500 GeV baseline, 1 TeV high luminosity purple = innermost endcap radius 500 ns reset time ~ 2‰ inactive pixels [O.Miller] Study to be repeated in SiD01 Verify optimisation Study to be repeated in SiD01 Verify optimisation X (mm) y (mm)
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Progress with sensor tests Work ongoing to test unformity of threshold and gain Report today on testbeam
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr SiD 16mm 2 area cells ZOOM 50 50 μm 2 MAPS pixels Tracking calorimeter
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Physics simulation 0.5 GeV MPV = 3.4 keV σ = 0.8 keV 5 GeV MPV = 3.4 keV σ = 0.8 keV 200 GeV MPV = 3.4 keV σ = 0.8 keV Geant4 energy of simulated hits E hit (keV) MAPS geometry implemented in Geant4 detector model (Mokka) for LDC detector concept Peak of MIP Landau stable with energy Definition of energy: E N pixels Artefact of MIPS crossing boundaries Correct by clustering algorithm Optimal threshold (and uniformity/stability) important for binary readout Threshold (keV) (E)/E 20 GeV photons
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Hit buffering for train
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Physics data rate low – noise dominates Optimised diode for Signal over noise ratio Worst case scenario charge collection Collection time Device level simulation Signal/noise 0.9 μm 1.8 μm 3.6 μm Distance to diode (charge injection point) Signal/Noise
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Attention to detail 1: digitisation [J.Ballin/A-M.Magnan] Digital ECAL, essential to simulate charge diffusion, noise, in G4 simulations
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr TestingTesting Tested device-level simulations using laser-based charge diffusion measurements at RAL 1064, 532,355 nm,focusing < 2 μm, pulse 4ns, 50 Hz repetition, fully automated Cosmics and source setup, Birmingham and Imperial, respectively. Beam test at DESY, Dec Analysis in progress Expand work on physics simulations Test performance of MAPS ECAL in ILD and SiD detector concepts Emphasis on re-optimisation of particle flow algorithms Cannot be done without specific, detailed simulation models... July: 1 st sensors delivered to RAL July: 1 st sensors delivered to RAL
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr pixels with analog output (A & B) 1 Pixel not active & read out (C) Used for Measurement of charge spread Cross-check device simulations Analog front-end testing Gain calibration (to be done) All results are PRELIMINARY A B C [Marcel Stanitzki] Analogue test pixels
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr A B C Area scanned by Laser Same design, but no deep p-well [Marcel Stanitzki] Without deep p-well
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr A B C Area scanned by Laser [Marcel Stanitzki] With deep p-well: I
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Pixel APixel B [Marcel Stanitzki] With deep p-well: II
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr A Tera-Pixel ECAL is challenging Benefits No readout chips CMOS is well-known and readily available Ability to make thin layers Current sources of concern DAQ needs Power consumption/Cooling System considerations
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr DAQ requirements O(10 12 ) channels are a lot... Physics rate is not the limiting factor Beam background and Noise will dominate Assuming 2625 bunches and 32 bits per Hit 10 6 Noise hits per bunch ~O(1000) Hits from Beam background per bunch (estimated from GuineaPIG) Per bunch train ~80 Gigabit / 10 Gigabyte Readout speed required 400 Gigabit/s CDF SVX-II can do 144 Gigabit/s already
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Cooling and power Cooling for the ECAL is a general issue Power Savings due to Duty Cycle (1%) Target Value for existing ECAL ASICS 4 µW/mm2 Current Consumption of MAPS ECAL: 40 µW/mm2 depending on pixel architecture TPAC1 not optimized at all for power consumption Compared to analog pad ECAL Factor 1000 more Channels Factor 10 more power Advantage: Heat load is spread evenly
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr [Marcel Stanitzki] Thermal properties
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS testbeam Desy Dec Extremely tight schedule… 4 sensors, PMT coincidence trigger 3, 6 GeV e - With/without tungsten pre-shower material Threshold scans USB_DAQ
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr PMT trigger
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Sensor setup in testbeam
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Concentrate on shapers
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr StrategyStrategy Want to start with the highest purity sample we can Scintillators behaviour “not optimal” Ensure sensor hits genuine Use clusters of hits initially, not single pixels Can we match clusters between sensors?
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr ClusteringClustering
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer correlations: x
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer correlations: y
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Layer-layer alignment
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr …and funding Recognised as generic technology Much interest to continue development of concept for ECAL Including for SiD …
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr MAPS summary Concept of CMOS MAPS digital ECAL for ILC Multi-vendors, cost/performance gains New INMAPS deep p-well process (optimise charge collection) Four architectures for sensor on first chips, delivered to RAL Jul 2007 Tests of sensor performance in progress: sources, charge diffusion, cosmics, testbeam Physics benchmark studies, compare MAPS vs. analogue Si-W designs In framework of SiD and IDC detector concepts
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr SummarySummary MAPS ECAL: alternative to baseline design (analogue SiW) Multi-vendors, cost/performance gains New INMAPS deep p-well process (optimise charge collection) Four architectures for sensor on first chips Tests of sensor performance ongoing Physics benchmark studies with MAPS ECAL to evaluate performance relative to standard analogue Si-W designs, for both SiD (and ILD) detector concepts Future plans Systematic studies of pixel to pixel gain and threshold variations Absolute gain calibration Second sensor…
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Backup slides…
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr The sensor test setup 5 dead pixels for logic : -hits buffering (SRAM) - time stamp = BX (13 bits) - only part with clock lines. 84 pixels 42 pixels Data format = 31 bits per hit 7 * 6 bits pattern per row Row index 1*1 cm² in total 2 capacitor arrangements 2 architectures 6 million transistors, pixels
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Architectures on ASIC1 PresamplerPreshaper Type dependant area: capacitors, and big resistor or monostable
Nigel Watson / BirminghamSiD Workshop, RAL, 15-Apr Physics data rate low – noise dominates Optimised diode for Signal over noise ratio Worst case scenario charge collection Collection time. Device level simulation Using Centaurus TCAD for sensor simulation + CADENCE GDS file for pixel description Signal/noiseCollected charge 0.9 μm 1.8 μm 3.6 μm Distance to diode