The Binomial Theorem (a+b)2 (a+b)(a+b) a2 +2ab + b2

Slides:



Advertisements
Similar presentations
6.8 – Pascal’s Triangle and the Binomial Theorem.
Advertisements

AB 11 22 33 44 55 66 77 88 99 10  20  19  18  17  16  15  14  13  12  11  21  22  23  24  25  26  27  28.
The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr.
Math 143 Section 8.5 Binomial Theorem. (a + b) 2 =a 2 + 2ab + b 2 (a + b) 3 =a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 =a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b.
Warm Up Multiply. 1. x(x3) x4 2. 3x2(x5) 3x7 3. 2(5x3) 10x3 4. x(6x2)
1 Polynomial Functions Exploring Polynomial Functions Exploring Polynomial Functions –Examples Examples Modeling Data with Polynomial Functions Modeling.
Binomial Expansion Honors Advanced Algebra Presentation 2-3.
2.4 Use the Binomial Theorem Test: Friday.
Comparisons Hold up the ‘+’ card if you think the answer is always positive. Hold up the ‘-’ card if you think the answer is always negative. The ?? Card.
Pascal’s Triangle and the Binomial Theorem, then Exam!
11.1 – Pascal’s Triangle and the Binomial Theorem
Инвестиционный паспорт Муниципального образования «Целинский район»
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
Mathematics.
Binomial Theorem & Binomial Expansion
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Pascal’s Triangle and the Binomial Theorem (x + y) 0 = 1 (x + y) 1 = 1x + 1y (x + y) 2 = 1x 2 + 2xy + 1y 2 (x + y) 3 = 1x 3 + 3x 2 y + 3xy 2 +1 y 3 (x.
Essential Question How do you add and subtract polynomials?
Unit 2 Calculating Derivatives From first principles!
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
5.4 Binomial Coefficients Theorem 1: The binomial theorem Let x and y be variables, and let n be a nonnegative integer. Then Example 3: What is the coefficient.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
Multiplying Polynomials “Two Special Cases”. Special Products: Square of a binomial (a+b) 2 = a 2 +ab+ab+b 2 = a 2 +2ab+b 2 (a-b) 2 =a 2 -ab-ab+b 2 =a.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
APC Unit 2 CH-12.5 Binomial Theorem. Warm-up  Take your Homework out  Clearly Label 12.2, 12.3, and 12.4  Ask your Questions  While I’m Checking…
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
By: Juan Fernando Polanco 8A. BINOMIAL EXPRESSIONS  In algebra, we use letters to replace numbers  This allows us to apply the equations to different.
Combination
The Binomial Theorem Section 9.2a!!!. Powers of Binomials Let’s expand (a + b) for n = 0, 1, 2, 3, 4, and 5: n Do you see a pattern with the binomial.
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Mixed Factoring. Steps to mixed factoring To factor a polynomial completely, you may need to use more than one factoring method. Use the steps on the.
5.3C- Special Patterns for Multiplying Binomials SUM AND DIFFERENCE (a+b)(a-b) = a² - b² (x +2)(x – 2) = x² -4 “O & I” cancel out of FOIL SQUARE OF A BINOMIAL.
Objective: To use Pascal’s Triangle and to explore the Binomial Theorem.
1(1)5 + 5(1)4(2x) + 10(1)3(2x)2 + 10(1)2(2x)3 + 5(1)(2x)4 + 1(2x)5
Splash Screen.
The Binomial Theorem.
The Binomial Theorem Ms.M.M.
4.2 Pascal’s Triangle and the Binomial Theorem
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
10.2b - Binomial Theorem.
Binomial Expansion.
The Binomial Theorem.
6.8 – Pascal’s Triangle and the Binomial Theorem
Objectives Multiply polynomials.
8.4 – Pascal’s Triangle and the Binomial Theorem
MATH 2160 Pascal’s Triangle.
TCM – DO NOW A peer believes that (a+b)3 is a3 + b3 How can you convince him that he is incorrect? Write your explanation in your notes notebook.
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Multiply polynomials When multiplying powers with the same base, keep the base and add the exponents. x2  x3 = x2+3 = x5 Example 1: Multiplying Monomials.
Binomial Expansion L.O. All pupils understand why binomial expansion is important All pupils understand the pattern binomial expansion follows All pupils.
Objective Multiply two binomials..
Objectives The student will be able to:
Bell Ringer 10/27/10 What is the GCF? 18x³y² and 24x² ab and a³b².
11.6 Binomial Theorem & Binomial Expansion
Binomial Theorem; Pascal’s Triangle
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Where n is a positive integer. Consider the expansion of
The Binomial Theorem.
Factoring using the greatest common factor (GCF).
6.8 – Pascal’s Triangle and the Binomial Theorem
HW: Finish HPC Benchmark 1 Review
Objectives The student will be able to:
Pascal’s Triangle.
10.4 – Pascal’s Triangle and the Binomial Theorem
Combine Like Terms Notes Page 23
Presentation transcript:

The Binomial Theorem (a+b)2 (a+b)(a+b) a2 +2ab + b2 (a+b)3 (a+b)(a2+2ab+b2) a3+3a2b2+3ab2+b3 Where have we seen these leading coefficients before? Pascal’s Triangle

The Binomial Theorem Tr+1 =( )an-rbr (a+b)n = an+ [nC1]a(n-1)b+….+ [nCr]a(n-r)br+…+bn (a+b)n = an+ ( )a(n-1)b+….+ ( )a(n-r)br+…+bn n n r 1 Finding General Term… Tr+1 =( )an-rbr n r

Example 3 Write down the first 3 and last 2 terms of the expansion of (2x+ )12 (2x+ )12=(2x)12 + ( )(2x)11( ) + ( )(2x)10( )2 + .......... + ( )(2x)( )11 + ( )12 12 12 2 1 12 11

Example 4 Find the 7th term of (3x- )14. a= (3x), b= (- ) and n=14 So, as Tr+1= ( )an-rbr, we let r = 6 T7= ( )(3x)8(- )6

Example 5 a) The coefficient of x6 b) The constant term In the expansion of (x2+ )12, find: a) The coefficient of x6 b) The constant term a= (x2), b= ( ) and n= 12 Tr+1 = ( )(x2)12-r( )r = ( )x24-2r = ( )4rx24-3r If 24-3r=0 Then 3r = 24 R = 8 T9 = ( )48x0 The constant term is… ( )48 or 32,440,320 If 24-3r=6 Then 3r=18 R=6 T7 = ( )46x6 The coefficient of x6 is ( )46 or 3,784,704

Example 6 Find the coefficient of x5 in the expansion of (x+3)(2x-1)6. =(x+3)[(2x)6+( )(2x)5(-1)+( )(2x)4(-1)2+…] =(x+3)(26x6-( )25x5+( )24x4-…) So, the terms containing x5 are ( )24x5 from (1) and -3( )25x5 from (2) The Coefficient of x5 is ( )24-3( )25=-336 1 2