First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.

Slides:



Advertisements
Similar presentations
Proposed new uses for the Ceilometer Network
Advertisements

Bremen Limb Workshop Satellite group First Heidelberg SCIA Limb Results Thomas Wagner,
Papers DSCD intercomparison: Journal: ATM based on 1996 template Core team: HKR, MVR, FW, MK Figures: MVR Tables: FW Deadline: May 2010 Campaign overview:
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
UPRM Lidar lab for atmospheric research 1- Cross validation of solar radiation using remote sensing equipment & GOES Lidar and Ceilometer validation.
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
IUP Heidelberg – NDACC/NORS Meeting – July Aerosol Profiling during CINDI Udo Frieß Henk Klein Baltink Katrijn Clémer Udo Frieß Hitoshi Irie Tim.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
GEO-CAPE COMMUNITY WORKSHOP MAY Vijay Natraj 1, Xiong Liu 2, Susan Kulawik 1, Kelly Chance 2, Robert Chatfield 3, David P. Edwards 4, Annmarie.
Hester Volten, Ellen Brinksma, Stijn Berkhout, Daan Swart, René van der Hoff, Hans Bergwerff, Pieternel Levelt, Gaia Pinardi, Michel Van Roozendael NO.
Task Group 3 AT2 workshop, 30 Sept – 1 Oct 2008 Task Group 3 Achievements and Prospects Ankie Piters, KNMI.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
M. Schaap, A. Apituley, R. Koelemeijer, R. Timmermans, G. de Leeuw Mapping the PM2.5 distribution in the Netherlands using MODIS AOD.
Mexican activities with regard to TEMPO Michel Grutter, Josue Arellano, Alejandro Bezanilla, Martina Friedrich, Arne Kruger, Claudia Rivera and Wolfgang.
Comparison of the aerosol extinction coefficient retrieved from MAX-DOAS measurements to in-situ measurements P. Zieger 1, K. Clemer 2, S. Yilmaz 3, R.
Ben Kravitz November 5, 2009 LIDAR. What is LIDAR? Stands for LIght Detection And Ranging Micropulse LASERs Measurements of (usually) backscatter from.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
Status S5p TROPOMI Pepijn Veefkind.
Irie et al., Multi-component retrievals for MAX-DOAS, 2 nd CINDI workshop, Brussels, March 10-11, 2010 Multi-component vertical profile retrievals for.
1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Lidar Intercomparion Study with Airborne Aerosol Optical Measurements near Tokyo on April 23, 2001 Toshiyuki Murayama Tokyo University of Mercantile Marine,
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Cloud screening and aerosol retrievals from MAX-DOAS measurements at Ukkel Clio Gielen Michel Van Roozendael, Francois Hendrick, Caroline Fayt, Christian.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
BIRA-IASB station report
S5P Ozone Profile (including Troposphere) verification: RAL Algorithm R.Siddans, G.Miles, B.Latter S5P Verification Workshop, MPIC, Mainz th May.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
Measuring UV aerosol absorption. Why is aerosol UV absorption important ? Change in boundary layer ozone mixing ratios as a result of direct aerosol forcing.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Results from Test-flight Series PNNLNASA AmesNASA GSFC B. SchmidS. DunaganS. Sinyuk.
KNMI 35 GHz Cloud Radar & Cloud Classification* Henk Klein Baltink * Robin Hogan (Univ. of Reading, UK)
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
HONO retrievals in Beijing and Xianghe F. Hendrick 1, K. Clémer 1,*, C. Fayt 1, C. Hermans 1, Y. Huan 1,2, T. Vlemmix 1, P. Wang 2, and M. Van Roozendael.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Plans to study horizontal NO 2 distribution Ankie Piters, Tim Vlemmix, KNMI data from: INTA, IUPB, JAMSTEC, KNMI, Leicester, NASA Objectives: –Satellite.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry.
AGACC II: WP3: Aerosol properties and radiative forcing at Uccle Veerle De Bock Royal Meteorological Institute of Belgium
 Methodology  Comparison with others instruments  Impact of daily AMF  Conclusions Tropospheric NO 2 from SAOZ F. Goutail, A. Pazmino, A. Griesfeller,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Review of PM2.5/AOD Relationships
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
François Hendrick and the NDACC/NORS UVVIS Working Group Demonstration Network Of ground-based Remote Sensing observations in support of the GMES Atmospheric.
MPI for Chemistry, Mainz, Germany BIRA/IASB, Brussels, Belgium University of Colorado, Boulder, USA CAS Hefei, China CAMS Beijing, China University of.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
Page 1 © Crown copyright 2004 Aircraft observations of Biomass burning aerosol Ben Johnson, Simon Osborne & Jim Haywood AMMA SOP0 Meeting, Exeter, 15 th.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Fourth TEMPO Science Team Meeting
LIDAR Ben Kravitz November 5, 2009.
DOAS workshop 2015, Brussels, July 2015
Intercomparison of HONO SCDs and profiles from MAX-DOAS observations during the MAD-CAT campaign and comparison to chemical model simulations Yang Wang,
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Julia Remmers1, Thomas Wagner1
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Bruchkouski I. , Krasouski A. , Dziomin V. , Svetashev A. G
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
MAXDOAS horizontal (averaging) effects
Presentation transcript:

First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI

The participants: MAX-DOAS  JAMSTEC → aerosol extinction profiles → VIS → 1km grid; parameterized  IUP HDB → aerosol extinction profiles → VIS → 200m grid  BIRA → aerosol extinction profiles → UV and VIS → 200m grid  MPI → aerosol extinction profiles → UV → AOD + surface ext. + layer height + f=0.9  IUP Bremen → AOD → VIS → ?; parameterized

 CIMEL sunphotometer (TNO) → AOD at different wavelengths & ssalb, phase-function  Nephelometer (PSI,TNO) → surface extinction & ssalb, phase-function  Ramen LIDAR (RIVM) → aerosol extinction profiles  Ceilometer (KNMI) → boundary layer height  Backscatter lidar (RIVM) → boundary layer height The participants:  …

Results; BIRA

AOD time series

AOD MAXDOAS vs. CIMEL

Measured O 4 DSCD are reduced by ~20% for BIRA, MPI, IUP HDB Not for JAMSTEC and IUP Bremen

With correctionWithout correction AOD MAXDOAS vs. CIMEL

Correcting the O 4 DSCD

Case: 30° elevation, pointing north, clear-sky, AOD<0.15 Correcting the O 4 DSCD Based on the Beijing dataset → Measured and simulated O 4 DSCD should be equal But sim. O 4 DSCDs = meas. O 4 DSCDs * 0.8  0.1

12 Measured DS SCD O4 is within 2% of the simulated using Hermans et al. cross section at room T (477 nm). Direct sun results VIS; Elena Spinei

Correcting the O 4 DSCD ? Are we really sure that the simulations are correct. That the differences are not caused by errors in other forward model parameters Aerosol optical properties, … Error in measured O 4 DSCD Error in the spectra Error in DOAS fit ? O 4 cross-section No Yes or ? ?

Influence of ssalb and g

BIRA VIS Heidelberg VIS JAMSTEC VIS Contour plots

BIRA UV MPI UV Contour plots

BIRA VIS Heidelberg VIS JAMSTEC VIS Contour plots; identical scales

BIRA UV MPI UV But; better results for f=1.1 Uplifted aerosol layer Contour plots; identical scales

BIRA VIS Heidelberg VIS JAMSTEC VIS Contour plots

BIRA UVMPI UV Contour plots

BIRA VIS Heidelberg VIS JAMSTEC VIS Contour plots; identical scales

BIRA UV MPI UV Contour plots; identical scales

Aerosol inter-comparisons: plans for the future Retrieving synthetic profiles:  BIRA will provide O 4 DSCDs and relative intensities at 4 wavelengths for 4 aerosol cases: low AOD and high AOD; surface layer and up-lifted layer  Try to retrieve the profiles using your best settings; the settings agreed on for the real data. MAXDOAS → Focus on both AOD and profiles

+ Sensitivity tests concerning ssalb, phase function,… Aerosol inter-comparisons: plans for the future Real data  On your own data set  On the Heidelberg dataset (data until October the 5th)  Retrievals using your own best settings  Retrievals using settings as similar as possible  Apriori extinction: exponential profile, SH=1km, AOD=0.1;  Height grid for the simulations: 200m grid to 4km.  Covariance matrix: 100% of apriori; 100m or 500m (HDB suggestion).  Atmosphere (P,T): USstandard  O3+NO2: USstandard  Lambertian surface albedo: 5%  Aerosol: optical properties are based on mean Nephelometer: g=0.65 and single scattering albedo = 0.95;  wavelengths: 360, 477, 577, 630nm if possible

MAXDOAS vs other instruments  Insitu data, nephelometer (Paul Zieger)  Aerosol extinction from Raman LIDAR (Arnoud Apituley) Paper on MAXDOAS intercomparison and the Nephelometer paper by June-July → deadline for data submission: end March Aerosol inter-comparisons: plans for the future

Summary The agreement between the different aerosol retrievals has already improved compared to the previous workshop Questions What’s up with the O 4 DSCD? What can we actually achieve? (what is our sensitivity, how sensitive are we towards forward model parameters and towards a-priori information, can we obtain “substitute aerosol profiles” for clouds,…) Conclusion for now We are making progress But we still have a lot of work to do; a lot of questions to answer