N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.

Slides:



Advertisements
Similar presentations
Thin Films, Diffraction, and Double slit interference
Advertisements

The waves spread out from the opening!
Chapter 37 Wave Optics EXAMPLES.
Topic 11.3 Diffraction.
Chapter 24 Wave Optics.
OPTICS. I. IMAGES A. Definition- An image is formed where light rays originating from the same point on an object intersect on a surface or appear to.
The Field of View of a Thin Lens Interferometer Baseline=2B F F=range from array center to detector  ’’  Nulled here. B B 2Bsin  Bsin  2 Channels.
Diffraction Physics 202 Professor Lee Carkner Lecture 24.
Single-Slit Diffraction: Interference Caused by a Single “Slit” or “Hole in the Wall”
The Hong Kong Polytechnic University Optics II----by Dr.H.Huang, Department of Applied Physics1 Interference Conditions for Interference: (i) (  2 
Lecture 22 Wave Optics-3 Chapter 22 PHYSICS 270 Dennis Papadopoulos April 2, 2010.
Lecture 21 Wave Optics-2 Chapter 22
Interference & Diffraction
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Double Slit Interference. Intensity of Double Slit E= E 1 + E 2 I= E 2 = E E E 1 E 2 = I 1 + I 2 + “interference”
Slide 1 Light and telescopes Just by analyzing the light received from a star, astronomers can retrieve information about a star’s 1.Total energy output.
Newton’s Rings Another method for observing interference in light waves is to place a planoconvex lens on top of a flat glass surface, as in Figure 24.8a.
Chapter 25: Interference and Diffraction
Chapter 25:Optical Instruments Cameras Homework assignment : Read Chap.25, Sample exercises : 4,21,24,41,43  Principle of a camera ss’ D Intensity of.
Ch 25 1 Chapter 25 Optical Instruments © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle.
Diffraction vs. Interference
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Chapter 37 - Interference and Diffraction
Diffraction: single slit How can we explain the pattern from light going through a single slit? w screen L x.
Optical Design Work for a Laser-Fiber Scanned
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Circular aperture Rectangular aperture Fraunhofer Diffraction.
Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing.
Principal maxima become sharper Increases the contrast between the principal maxima and the subsidiary maxima GRATINGS: Why Add More Slits?
Fringes Color pattern occurs because incident light is not monochromatic.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
S-110 A.What does the term Interference mean when applied to waves? B.Describe what you think would happened when light interferes constructively. C.Describe.
The waves spread out from the opening!
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
ECEN 4616/5616 Optoelectronic Design Class website with past lectures, various files, and assignments: (The.
1 Fraunhofer Diffraction: Single, multiple slit(s) & Circular aperture Fri. Nov. 22, 2002.
Chapter 38 Diffraction Patterns and Polarization.
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Image at:
Young’s Double Slit Experiment.
Chapter 15 Preview Objectives Combining Light Waves
Thin Lenses A lens is an optical device consisting of two refracting surfaces The simplest lens has two spherical surfaces close enough together that we.
The law of reflection: The law of refraction: Image formation
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Periscope Configuration
Interference and Diffraction. Conditions for Interference Coherent Sources - The phase between waves from the multiple sources must be constant. Monochromatic.
Coherent Sources.
1 The law of reflection: The law of refraction: Snell’s Law Image formation.
X-ray Interferometer Mirror Module ISAL Study Pre-work Overview.
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Phys102 Lecture 26, 27, 28 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution.
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
LAI-FKSI Optical Sensitivity at 2µ wavelength
Young’s Double Slit Experiment.
Interference Requirements
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
Single Slit Diffraction
Diffraction vs. Interference
The Geometry of Interference and Diffraction
Fraunhofer diffraction from Circular apertures:
Physics 3 – Dec 7, 2017 P3 Challenge –
The waves spread out from the opening!
Presentation transcript:

N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y MAXIM Periscope Module Optics Dennis Charles Evans 25 April 2003

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p2 Final Version 25 April 2003 MAXIM Periscope Module Mirror Parameters 30 cm TBD Active area is 30 cm long by either 2,10 or 30 cm wide- so THREE different types of mirror modules for a trade study Surface figure requirement:  /200 rms (at 633nm) Mirror mass must be minimized Surface Figure and Micro-roughness indicate a stable glass substrate such as ULE, ultra low expansion glass For Baseline, width was set at 20 cm so metallic silicon could be used. 2,10, and 30 cm TRADE STUDY Mirror surface

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p3 Final Version 25 April 2003 MAXIM Periscope Module Lightweight ULE Mirror

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p4 Final Version 25 April 2003 MAXIM Periscope Module Kodak Lightweight Cryostable Mirror

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p5 Final Version 25 April 2003 MAXIM Periscope Module Kodak Lightweight Cryostable Mirror

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p6 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Pathfinder IMDC Study May 2002 Science Phase #2 High Resolution (100 nas) 1 km 20,000 km ATAN 0.5/20000 = arc sec

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p7 Final Version 25 April 2003 MAXIM Periscope Module Collector Area Collecting Area Each Unit is a collection of 2 sets of 4 mirrors on one common bench 30 × SIN 1 = cm projected width ×20 = cm 2 Each 20 cm wide set has cm 2 collecting area Goal is to have 1000 cm 2 area Hub= 6 units (12 sets)[ 48 mirrors] Satellite= 25 (4 sets)[400 mirrors] ((25 × 4)+12) × = ((25 × 4)+12) × = – ÷ = Clear Width –28 × SIN 1 = × = Mirrors Physical: 30 cm long and 20 cm wide Clear Footprint: 28 cm long and cm wide

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p8 Final Version 25 April 2003 MAXIM Periscope Module Collector Area & Free Flier Tradeoff AperturesBaseline 30 x 20 cm blanks cm 2 Baseline x x 29 cm blanks cm 2 Hub[6x2=12] cm 2 [4 x 2=8] cm 2 Free Fliers[25 x 4=100] cm 2 [17 x 4=68] cm 2 Total Area1000 cm cm 2 Mass Ratio1x 31=311.5 x 21 = 31.5 CostBaseline17/25=0.68 for FF S/C!

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p9 Final Version 25 April 2003 MAXIM Periscope Module Aperture Locations at 20,000 and 500 km Focal Length ZEMAX Configurations Location_20000 Location_

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p10 Final Version 25 April 2003 MAXIM Periscope Module Aperture Locations

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p11 Final Version 25 April 2003 MAXIM Periscope Module Aperture Locations (central area)

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p12 Final Version 25 April 2003 MAXIM Periscope Module Optical Layout F R (F 2 +R 2 )^ 0.5 OPD R OPD/R = R/ (F 2 +R 2 )^ 0.5 OPD=R 2 / (F 2 +R 2 )^ 0.5

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p13 Final Version 25 April 2003 MAXIM Periscope Module Maxim “Quadriscope” Layout

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p14 Final Version 25 April 2003 MAXIM Periscope Module Sample Mirror Arrangement (10  example) Using RTL to calculate central ray path Delay Line Shift of 1 micron = 698 A Path Difference

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p15 Final Version 25 April 2003 MAXIM Periscope Module Total Optical Path Differences Total Optical Path Difference (meters) R= ; F= ; OPD=(R*2)÷((R*2)+(F*2))*0.5 ; OPD ( nm) R=.25 ; F= ; OPD=(R*2)÷((R*2)+(F*2))*0.5 ; OPD E¯7 (125 nm) Delay Line Sensitivity ÷ 69.8 = units of 0.1 micron = 505 microns = meters

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p16 Final Version 25 April 2003 MAXIM Periscope Module Airy Diffraction “Rings” for 500 km OPD=1250A 500km OPD=31.25A 20000km Focal Distance = mm “Diameter” mm Airy Radius microns Airy Radius arc-sec

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p17 Final Version 25 April 2003 MAXIM Periscope Module Interference Fringes Pathlength Differences D 1 wavelength = 1 nm (10 Angstroms) A D= mm/TAN /3600. = mm or 50 lines/mm 0.5 nm

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p18 Final Version 25 April 2003 MAXIM Periscope Module All 25 configurations geometrically aligned

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p19 Final Version 25 April 2003 MAXIM Periscope Module Configuration 1

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p20 Final Version 25 April 2003 MAXIM Periscope Module Configuration 1 4

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p21 Final Version 25 April 2003 MAXIM Periscope Module Configuration 1 4 7

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p22 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p23 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p24 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p25 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p26 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p27 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p28 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p29 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p30 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p31 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p32 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p33 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p34 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p35 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p36 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p37 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p38 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p39 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p40 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p41 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p42 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p43 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p44 Final Version 25 April 2003 MAXIM Periscope Module Polychromatic Wavelengths For an 0.8A bandwidth and a center wavelength of 10A, the coherence length (resonance length) is approximately 125 A.

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p45 Final Version 25 April 2003 MAXIM Periscope Module Configuration

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p46 Final Version 25 April 2003 MAXIM Periscope Module Y Cross section, All 25 Apertures, not phased

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p47 Final Version 25 April 2003 MAXIM Periscope Module Y Cross section, All 25 Apertures, not phased

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p48 Final Version 25 April 2003 MAXIM Periscope Module X Cross section, All 25 Apertures, not phased

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p49 Final Version 25 April 2003 MAXIM Periscope Module Polychromatic Phasing, 22 & 25

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p50 Final Version 25 April 2003 MAXIM Periscope Module Polychromatic Phasing, 22 & 25

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p51 Final Version 25 April 2003 MAXIM Periscope Module Multi-configuration Variables 1:1: 1: Quadriscope Free Flier Azimuth (0=North) 2: Quadriscope Free Flier Radius distance 3: Inversion for Southern Quadriscopes 4: Mirror 4 X-Tilt 5: Mirror 4 Y-Tilt (Roll along length) 6: Mirror 1 Glass (use ‘blank’ as shutter) 7: Delay Line Shift ( m = 69.8 A OPD)

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p52 Final Version 25 April 2003 MAXIM Periscope Module Next Steps Fringe Phasing –monochromatic –polychromatic (12 wavelengths in ZEMAX) –Problem: It looks like ZEMAX is using paraxial parameters to compute optical paths for each calculation and not adjusting for real optical path. –Delay line shifts of meters did not produce any effect in the fringe patterns. –Shifts of 10 mm blocked the path and no image (no pupil) was produced. –A Non-Sequential model may resolve this???? Extend Source Image –“F” –Star Image

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p53 Final Version 25 April 2003 MAXIM Periscope Module Next Steps – “F” Source F F F F F F F F F F F F R, Theta X Y or multiple Z rolls Next

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p54 Final Version 25 April 2003 MAXIM Periscope Module Back-up Slides

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p55 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Periscope Improved Mirror Grouping Group and package Primary and Secondary Mirrors as “Periscope” Pairs

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p56 Final Version 25 April 2003 MAXIM Periscope Module AutoCAD Layout Drawing

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p57 Final Version 25 April 2003 MAXIM Periscope Module  1 25 meters, Separation =  mm

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p58 Final Version 25 April 2003 MAXIM Periscope Module Interference Fringes D 1 wavelength = 0.1 mm 11 D=0.050/TAN 1  = 2.86 mm. 20mm/2.86mm= mm

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p59 Final Version 25 April 2003 MAXIM Periscope Module Nonsequential Model Two Periscopes, 180 , 100 

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p60 Final Version 25 April 2003 MAXIM Periscope Module Upper Periscope

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p61 Final Version 25 April 2003 MAXIM Periscope Module Geometric Ray Trace

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p62 Final Version 25 April 2003 MAXIM Periscope Module 100 microns wavelength

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p63 Final Version 25 April 2003 MAXIM Periscope Module Solid Model 100 micron wavelength

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p64 Final Version 25 April 2003 MAXIM Periscope Module 50 micron wavelength

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p65 Final Version 25 April 2003 MAXIM Periscope Module Solid Model 50 micron wavelength

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p66 Final Version 25 April 2003 MAXIM Periscope Module 12.5 micron wavelength

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p67 Final Version 25 April 2003 MAXIM Periscope Module 12.5 microns, 1/8 size

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p68 Final Version 25 April 2003 MAXIM Periscope Module microns, 1/8 size

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p69 Final Version 25 April 2003 MAXIM Periscope Module Sequential

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p70 Final Version 25 April 2003 MAXIM Periscope Module Periscope Mirrors Four configurations

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p71 Final Version 25 April 2003 MAXIM Periscope Module Sequential, 100 ,

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p72 Final Version 25 April 2003 MAXIM Periscope Module Nonsequential Two (180  ) Configurations

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p73 Final Version 25 April 2003 MAXIM Periscope Module Nonsequential All Four Configurations

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Optics, p74 Final Version 25 April 2003 MAXIM Periscope Module Interpretation of Models Nonsequential Model –ZEMAX is calculating pathlength and phase correctly. –The model is approximately a dual slit ZEMAX does not seem to be calculating intensity roll-off at all Sequential Model –The results from the sequential model, All Configurations, appears to be exactly the same as the Nonsequential model.