Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, 15-16 dicembre 2003 Relatore: M. Candidi SFSI Fisica.

Slides:



Advertisements
Similar presentations
SuperDARN is a network of HF radars (8-20 MHz) used to study the convection in the Earth's ionosphere at altitudes between 90 and 400 km and at magnetic.
Advertisements

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, 5-6 novembre 2003 Relatore: Maria Teresa Capria.
Abstract Real-time images of Earths space environment from NASAs IMAGE satellite will soon be available on the NOAA Space Environment Center Web site.
1 SWWT Initiatives - Long term monitoring of Sun-Earth Interactions F. Lefeuvre + contributions from 16 groups or individual SWWT members.
Space Weather in CMA Xiaonong Shen Deputy Administrator China Meteorological Administration 17 May 2011 WMO Cg-XVI Side Event Global Preparedness for Space.
COSPAR E July 22, Paris revised for Nobeyama Symposium 2004 October 29, Kiyosato Takeo Kosugi (ISAS/JAXA, Japan)
Geospace Electrodynamic Connections (GEC) Mission The GEC mission has been in the formulation phase as part of NASA’s Solar Terrestrial Probe program for.
E. Amata M. Candidi (1), M.F. Marcucci (1), S. Massetti (1), P. Francia (3), U. Villante (3) (1) Istituto di Fisica dello Spazio Interplanetario (IFSI),
Fine-scale 3-D Dynamics of Critical Plasma Regions: Necessity of Multipoint Measurements R. Lundin 1, I. Sandahl 1, M. Yamauchi 1, U. Brändström 1, and.
The Solar Corona and Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics.
SuperDARN interhemispheric observations of reconnection signatures: a case study. Coco, I. (1), S. Massetti (1), E. Amata (1), M. F. Marcucci (1), and.
Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005 A 3D cosmic ray detector on the Moon X. Moussas University.
Phase Coherence on Open Field Lines Associated with FLRs Abiyu Nedie, Frances Fenrich & Robert Rankin University of Alberta Edmonton, Alberta, Canada 2011.
O. M. Shalabiea Department of Physics, Northern Borders University, KSA.
The Solar and Space Weather Reseach Group in Lund Space weather Solar activity - the driver Modelling and forecasting space weather and effects using KBN.
H1C: Identify the Impacts of Solar Variability on the Earth’s Atmosphere Phase , Understand our Home in Space Global density, composition, temperature,
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
Is There Life Out There? Our Solar System (and beyond) Draw a picture of what you think life would look like on another planet, if it existed. Describe.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
The Sun. Sun Considered a medium STAR 93,000,000 miles away from Earth 1.39 million kilometers in diameter (one million Earths can fit inside the sun.
The Dangers of Solar Storms and Solar Cycles.  For every 1 million atoms of hydrogen in the entire sun  98,000 atoms of helium  850 of oxygen  360.
The Sun and the Heliosphere: some basic concepts…
Our Sun A medium sized star. Our Sun Our sun is a typical medium sized star. A star is a hot ball of plasma that shines because nuclear fusion is taking.
The Sun Chapter 29 Section 29.2 and Spaceweather.
Space Weather Major sources of space weather ● Solar wind – a stream of plasma consisting of high energy charged particles released from the upper atmosphere.
The Sun Our Nearest Star. The Source of the Sun’s Energy The Source of the Sun’s Energy Fusion of light elements into heavier elements. Hydrogen converts.
COST 724:Developing the scientific basis for monitoring, modelling and predicting Space Weather Sofia meeting, May 2007 Space Weather Definition This is.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
Space Weather from Coronal Holes and High Speed Streams M. Leila Mays (NASA/GSFC and CUA) SW REDISW REDI 2014 June 2-13.
Nowcast model of low energy electrons (1-150 keV) for surface charging hazards Natalia Ganushkina Finnish Meteorological Institute, Helsinki, Finland.
The Sun- Solar Activity. Damage to communications & power systems.
Solar Wind and Coronal Mass Ejections
The Solar Wind.
The Sun.
Global Simulation of Interaction of the Solar Wind with the Earth's Magnetosphere and Ionosphere Tatsuki Ogino Solar-Terrestrial Environment Laboratory.
29 August, 2011 Beijing, China Space science missions related to ILWS in China
Space Science MO&DA Programs - September Page 1 SS It is known that the aurora is created by intense electron beams which impact the upper atmosphere.
Advanced Solar Theory (MT5810) OUTLINE 1.Observational properties of the Sun 2.MHD equations (revision) 3.Induction equation - solutions when R m >1 4.Magnetic.
A generic description of planetary aurora J. De Keyser, R. Maggiolo, and L. Maes Belgian Institute for Space Aeronomy, Brussels, Belgium
Universal Processes in Neutral Media Roger Smith Chapman Meeting on Universal Processes Savannah, Georgia November 2008.
AURORAS Aurora borealis (northern lights) Aurora australis (southern lights) Beautiful, dynamic, light displays seen in the night sky in the northern.
The Sun Distance from Earth: 150 million km OR 93 million miles Size: 1.4 million km in diameter Age: 4.5 billion years old, halfway through its 10 billion.
Topics in Space Weather Earth Atmosphere & Ionosphere
CSI 769 Fall 2009 Jie Zhang Solar and Heliospheric Physics.
Guan Le NASA Goddard Space Flight Center Challenges in Measuring External Current Systems Driven by Solar Wind-Magnetosphere Interaction.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
Lesson 2.  At the center of our solar system is the Sun which is a typical medium sized star.  Composed mainly of Hydrogen (73% by mass), 23% helium.
CRRES observations indicate an abrupt increase in radiation belt fluxes corresponding to the arrival of a solar wind shock. The processes(s) which accelerate.
New Science Opportunities with a Mid-Latitude SuperDARN Radar Raymond A. Greenwald Johns Hopkins University Applied Physics Laboratory.
By: Kristin Maxey Period 4
ST9 TPWS OSS Science Needs Overview Robert M. Nelson Lead Scientist New Millennium Program Offcie California Institute of Technology, Jet Propulsion.
Layers of the Atmosphere Check your JIGSAW! Do you have all of these facts?
The Sun The SUN Chapter 29 Chapter 29.
1 E. AMATA 1 & M. MESSEROTTI 2,3,4 1 INAF- IFSI, Roma, Italy 2 INAF - Astronomical Observatory of Trieste. Italy 3 Department of Physics, University of.
30 April 2009 Space Weather Workshop 2009 The Challenge of Predicting the Ionosphere: Recent results from CISM. W. Jeffrey Hughes Center for Integrated.
2016 Solar Storms with NASA/NOAA GOES-R Satellite Primed to Support Space Weather Predictive Capabilities On 20 December 2016 Earth encountered a stream.
ESA SSA Measurement Requirements for SWE Forecasts
CEDAR Frontiers: Daytime Optical Aeronomy Duggirala Pallamraju and Supriya Chakrabarti Center for Space Physics, Boston University &
Heliophysics Pedigree
The Ionosphere and Thermosphere GEM 2013 Student Tutorial
ICESTAR: Solar-terrestrial and aeronomy research during the International Polar Year Kirsti Kauristie1, Allan Weatherwax2, Richard Harrison3, Richard.
Introduction to Space Weather Interplanetary Transients
Ionosphere, Magnetosphere and Thermosphere Anthea Coster
NASA Nasa's Parker Solar Probe mission set off to explore the Sun's atmosphere in the summer of The probe will swoop to within 4 million miles of.
Solar Activity and Space Weather
Introduction to Space Weather
Solar and Heliospheric Physics
Physics 320: Interplanetary Space and the Heliosphere (Lecture 24)
SWWT Initiatives - Long term monitoring of Sun-Earth Interactions
CORONAL MASS EJECTIONS
Presentation transcript:

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, dicembre 2003 Relatore: M. Candidi SFSI Fisica del Plasma nel Sistema Solare I plasmi astrofisici nel laboratorio naturale del Sistema Solare; lunico vento stellare che possiamo osservare direttamente in situ, e dettagliatamente nei suoi effetti sui pianeti Relazioni Sole-Altri Pianeti Linterazione Sole-Altri Pianeti Linterazione Sole-Terra Linterazione Magnetosfera-Ionosfera Relazioni Sole-Terra Sole-Vento solare-Eliosfera Corona solare

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Coronal loop; the picture shows the features of the Suns magnetic fields The magnetic field may convert energy through reconnection of adjacent loops Energisation of the plasma may result through several mechanisms of transport to higher altitudes NASA TRACE ESA SOHO The Sun is the driver Sun and solar atmosphere Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Cosmic rays in the heliosphere Heliosphere: the region of space where the solar wind dominates over the interstellar gas Cosmic Rays are modulated by the geometry of this region and their detection is affected (at Earth or in the space around Earth) Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi The solar wind transfers mass, momentum and energy to the Earth system. It may be observed al L1 by monitoring spacecraft, tens of minutes before it reaches the magnetosphere boundary Mag field (B,Bz) Azimuth Density (n) Velocity (v) Temperature The parameters of the incoming solar wind determine the strenght of coupling with the magnetosphere (mainly Bz, and nv, the plasma dynamic pressure). When Bz is south, coupling between the solar wind and the magnetosphere is favoured. NASA ACE Solar wind Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, 5-6 novembre 2003 Relatore: M. Candidi The magnetosphere responds to the inputs Magnetosphere Electric current systems develop : Tail Field aligned Polar Ionospheric Ring Chapman-Ferraro These change in time, driven by the varying solar wind input Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Theta aurora over Antarctica Auroras form on magnetised planets with an atmosphere in a stellar wind Effects in the human environment follow Ionosphere Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi SPACE WEATHER …to observe, study and forecast the effects of solar phenomena which…...may endanger life in space and performance of space and terrestrial systems…..NASA Living with a starand the space weather initiative of ESA. … is a part of solar terrestrial and space physics. Intense flux of high energy electrons damages commercial satellites at synchronous orbit Strong magnetic field variations couple inductively to long power lines and generate intense electric currents. Damage to system determines black-outs Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Roma, dicembre 2003 From The Sun to the Earth-and beyond a Decadal Research Strategy in Solar and Space Physics (US National Research Council, 2003) Important answers have been given through the accomplishments of the last decades about the physics of the Sun, the interplanetary medium and the space environments of the Earth and other solar system bodies. Five challenges remain to be answered for the next dacade ( ), due to lack of observations in key regions and limited capabilities and infrastructures. (1)The structure and dynamics of the Sun interior (generation of mag. fields, origin of solar cycle, causes of solar activity, structure and dynamics of corona) (2)Heliospheric structure (distribution of mag. fields and matter, interaction of solar atmosphere with local interstellar medium) (3)Space environment of Earth and other solar system bodies and dynamical response to external influences. (4)Basic physical principles in processes observed in solar and space plasmas. (5)Develop near-real-time predictive capability for understanding and quantifying impact on human activities ( space weather ).

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Solar Terrestrial Plasma Physics at IFSI Solar wind processes such as energy transport and plasma waves Cosmic Rays interaction with heliospheric structures MHD turbulence and coherent structures in the Solar Wind Study of magnetopause microprocesses such as plasma transport and reconnection Cusp and high latitude boundaries of the magnetosphere Polar ionosphere phenomena such as plasma convection and field aligned currents Space weather Cosmic rays interactions with neutral atmosphere Electrodynamic interactions for conductive tethers in orbit Roma, dicembre 2003

Ruoli nei Progetti Europei ed Internazionali di Space Weather OA Turin OA Trieste IROE/CNR Florence Uni LAquila IFSI/CNR Rome INGV Rome OA Rome OA Naples OA Catania Uni Rome Uni Turin Uni Naples Uni Catania ESA Space Weather Working Team ESA Space Weather Pilot Projects EU-Solar Terrestrial and Atmospheric Res. E-STAR ESF COST Action 724 on Space Weather Iniziativa Nazionale di Space Weather Iniziative Europee di Space Weather Rappresentante nazionale : M. Candidi Proponente : E. Amata Proponente : E. Amata Programmi approvati : E. Amata GIFINT Programmi approvati : E. Amata GIFINT Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. CandidiRoma, dicembre 2003 EU Research and Training Network Responsabile : G. Consolini Responsabile : G. Consolini

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi ESA Space Weather pilot projects (16) GIFINT IFSI/INGV/RAL/Obs.Athens E. Amata Others ILWS NASA/ESA/RASA/JAEA/CSA WGs Ionosphere Thermosphere Ground Based Obs. Magnetosphere EU COST Action 724 WGs National rep. SCOSTEP (ICSU) WGs Bureau member M. Candidi Solar Activity M. Messerotti Radiation Environment Solar Wind Disturbances at Earth Space Weather Observations and Services M. Candidi Solar Influence on Climate Space Weather Atmospheric Coupling Space Climatology Others Solar Terrestrial Physics and Space Weather: International Committes Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi What are we doing about it? Space missions: Ulysses Cluster Double Star Ground based instruments All-sky cameras SuperDARN radars Cosmic ray detectors Theory Roma, dicembre 2003 Tutti saranno descritti nelle seguenti presentazioni, salvo alcuni aspetti che darò subito, per alcune cose che non saranno dettagliate dopo

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Prompt data for Space Weather Revised data for Space Climatology Data files in the international formats for the World-Wide Network of detectors High-speed solar wind streams identification Cosmic ray induced effects in the terrestrial environment (air mass, atmospheric temperature, electric fields, geomagnetic and latitude dependences, north-south differences, secular variations, jerks, geomagnetic anomalies, …) Study of solar and galactic cosmic rays and their relation with modulation phenomena (short-, medium- and long-term basis) Cosmic rays in the heliosphere Roma, dicembre 2003 Ulteriori dettagli nella presentazione della stazione SVIRCO e delle stazioni LARC, ESO, OLC

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Baia Terra Nova, March 22nd, 2001, 13:40 GUT ( =428nm) Northern hemisphere polar sites equipped with all-sky cameras by IFSI/CNR (NyAlesund, Svalbard; Zackenberg, Greenland). Longitudinal array, MIRACLE IFSI all-sky cameras: Arctic and Antarctic Italian antarctic instrumentation sites: Baia Terra Nova Dome-C Roma, dicembre 2003 Ny Alesund Zackenberg

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, 5-6 novembre 2003 Relatore: M. Candidi Operational criterion for long term tether stability STAIF 2002 Albuquerque NM February Tether should operate for 3 months with angular oscillations, both in plane and out of plane not overtaking 20 degrees Bare tether : in plane oscillations I 0 < 0.94 amperes Active experiments

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Relatore: M. Candidi Solar wind andMagnetosphere Double Star CLUSTER CLUSTER Roma, dicembre 2003

Istituto di Astrofisica Spaziale e Fisica CosmicaIstituto di Fisica dello Spazio Interplanetario Roma, 5-6 novembre 2003 Relatore: M. Candidi SuperDARN radars Remote sensing of the motion of ionospheric irregularities; Doppler shift of radar signal with pairs of crossed ground based radars.

Figure 3. Maps of the Super Dual Auroral Radar Network (SuperDARN) arrays over the northern (left) and southern (right) polar regions. The Antarctic map shows 6 existing (yellow) and 5 planned (light brown) radars that will provide complete coverage of the southern polar region above 60 corrected geomagnetic latitude.