Christopher G. Hamaker, Illinois State University, Normal IL © 2008, Prentice Hall Chapter 11 The Gaseous State INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY.

Slides:



Advertisements
Similar presentations
Section 2 – The Gas Laws Scientists have been studying physical properties of gases for hundreds of years. In 1662, Robert Boyle discovered that gas.
Advertisements

Physical Characteristics of Gases
Christopher G. Hamaker, Illinois State University, Normal IL
Physical Characteristics of Gases
Reading for Tuesday: Chapter Reading for Tuesday: Chapter Homework 11.1 – Due Tuesday 4/14/15 Homework 11.1 – Due Tuesday 4/14/15 Chapter.
Gases and Gas Laws Introduction The properties of gases will be introduced along with five ways of predicting the behavior of gases: Boyle’s Law, Charles’
The Nature of Gases Gas Pressure –the force exerted by a gas per unit surface area of an object Due to: a) force of collisions b) number of collisions.
Chapter 10 PHYSICAL CHARACTERISTICS OF GASES
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
1 Chapter 12 The Behavior of Gases. 2 Section 12.1 The Properties of Gases u OBJECTIVES: Describe the properties of gas particles.
Pressure and Pressure Conversions
Gas and Pressure.
Christopher G. Hamaker, Illinois State University, Normal IL © 2008, Prentice Hall Chapter 11 The Gaseous State INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY.
The Gas Laws.
The Gas Laws u Describe HOW gases behave. u Can be predicted by the theory. u Amount of change can be calculated with mathematical equations.
INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 11 1 © 2011 Pearson Education,
1 Chapter 12 The Behavior of Gases Milbank High School.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass.
1 Gases Chapter Properties of Gases Expand to completely fill their container Take the Shape of their container Low Density –much less than solid.
The three main states of matter that we meet daily are: gas, liquid, and solid. We will be looking at the first state of matter, gas. Gases can be compressed,
Gases Notes A. Physical Properties: 1.Gases have mass. The density is much smaller than solids or liquids, but they have mass. (A full balloon weighs.
1 Gases Chapter Properties of Gases Expand to completely fill their container Take the Shape of their container Low Density –much less than solid.
1 Chapter 14 Gases Pioneer High School Ms. Julia V. Bermudez.
What affects the behavior of a gas? u The number of particles present u Volume (the size of the container) u Temperature 2.
Zumdahl Zumdahl DeCoste
GASES.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Gas!!! It’s Everywhere!!!!.
Gases Physical Characteristics of Gases: The Kinetic Theory (a model for gases): 1. Gases consist of a large number of tiny particles with insignificant.
Copyright©2004 by Houghton Mifflin Company. All rights reserved. 1 Introductory Chemistry: A Foundation FIFTH EDITION by Steven S. Zumdahl University of.
3 basic gas laws. Volume – refers to the space matter (gas) occupies. Measured in liters (L). Pressure – the number of times particles collide with each.
Why Balloons Float (and why they don’t) Unit 3: Phases of Matter Lesson 3: Gases and Pressure 1.
1 Unit 10: Gases Chapter 14 Test: February 25, 2009.
You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a gas.
1 Gases: Ch Pressure Basic properties of gases –Expand to completely fill their container –Take the shape of their container –Have low density (compared.
Unit 12 - Gases Pressure Pressure and Volume: Boyle’s Law Volume and Temperature: Charles’s Law Volume and Moles: Avogadro’s Law Ideal Gas Law Dalton’s.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases The kinetic-molecular theory of gases: A gas consists of particles, atoms, or molecules that move randomly and rapidly. The size of gas particles.
Gas Properties and Gas Laws Chapters Kinetic Molecular Theory of Gases An ideal gas is one that fits all the assumptions of this theory: 1) Gases.
Physical Characteristics of Gases
The Gas Laws. INTRODUCTION TO GASES I can identify the properties of a gas. I can describe and explain the properties of a gas.
GASES Chapter 10. The Atmosphere The atmosphere is a gaseous solution of nitrogen, N 2, and oxygen, O 2. The atmosphere both supports life and acts as.
Chapter 5 Gases.
Chapter 11: Gases. Section 1: Gases and Pressure.
by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic.
1 Chapter 10 Gases Forestville Central School. 2 Properties of Gases Properties of Gases: 1. Gases have an indefinite shape. 2. Gases can expand. 3. Gases.
The Gas Laws u The gas laws describe HOW gases behave. u They can be predicted by theory. u The amount of change can be calculated with mathematical.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Chapter 11 The Gaseous State Vanessa N. Prasad-Permaul CHM 1025 Valencia College Chapter 11 1 © 2011 Pearson Education, Inc.
Characteristics of Gases The Kinetic-Molecular Theory of Matter Pressure The Gas Laws.
Gas Laws – Part I What is a Solid Particles (molecules, atoms, or ions) close to each other arranged in a large ordered lattice. Move and vibrate in.
Section 13.1 Describing the Properties of Gases Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
Chapter 5 Gases. Air Pressure & Shallow Wells Gases Are mostly empty space Occupy containers uniformly and completely The densities of gases are much.
Properties of Gases Kinetic Molecular Theory: 1.Small particles (atoms or molecules) move quickly and randomly 2.Negligible attractive forces between particles.
The Properties of Gases Chapter 12. Properties of Gases (not in Notes) Gases are fluids… Fluid: (not just to describe liquids)  can describe substances.
GASES Unit 10. KINETIC-MOLECULAR THEORY OF GASES 1.Gases consist of tiny atoms or molecules that are in constant random motion. 2.The space between gas.
Gases Boyle’s Law. As the volume of a gas increases, the pressure decreases. –Temperature remains constant.
Christopher G. Hamaker, Illinois State University, Normal IL © 2008, Prentice Hall Chapter 11 The Gaseous State INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY.
Gases Physical Characteristics & Molecular Composition
Chapter 10 Gases by Christopher G. Hamaker Illinois State University 1
States of Matter & Gas Laws
What affects the behavior of a gas?
CHEMISTRY CHAPTER 11 TEMPERATURE
Gas Laws.
Lecture Presentation Chapter 10 Gases John Singer Jackson College.
Gas Laws Unit 8.
Chapter 11 The Gaseous State by Christopher Hamaker
Chapter 5 Gases.
Chemistry 1411 Joanna Sabey
Presentation transcript:

Christopher G. Hamaker, Illinois State University, Normal IL © 2008, Prentice Hall Chapter 11 The Gaseous State INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY Concepts & Connections Fifth Edition by Charles H. Corwin

Chapter 11 2 There are 5 important properties of gases: –gases have an indefinite shape –gases have low densities –gases can compress –gases can expand –gases mix completely with other gases in the same container Let’s take a closer look at these properties. Properties of Gases

Chapter 11 3 Gases have an indefinite shape: –A gas takes the shape of its container, filling it completely. If the container changes shape, the gas also changes shape. Gases have low densities: –The density of air is about g/mL compared to a density of 1.0 g/mL for water. Air is about 1000 times less dense than water. Detailed Gas Properties

Chapter 11 4 Gases can compress: –The volume of a gas decreases when the volume of its container decreases. If the volume is reduced enough, the gas will liquefy. Gases can expand: –A gas constantly expands to fill a sealed container. The volume of a gas increases if there is an increase in the volume of the container. Detailed Gas Properties

Chapter 11 5 Gases mix completely with other gases in the same container: –Air is an example of a mixture of gases. When automobiles emit nitrogen oxide gases into the atmosphere, they mix with the other atmospheric gases. –A mixture of gases in a sealed container will mix to form a homogeneous mixture. Detailed Gas Properties

Chapter 11 6 The Greenhouse Effect Several gases contribute to the greenhouse effect. High energy radiation strikes the Earth’s surface, and is converted to heat. This heat is radiated from the surface as infrared radiation. This infrared radiation is absorbed by the gases, and released as heat in all directions, heating the atmosphere.

Chapter 11 7 Gas pressure is the result of constantly moving gas molecules striking the inside surface of their container. –The more often the molecules collide with the sides of the container, the higher the pressure. –The higher the temperature, the faster gas molecules move. Gas Pressure

Chapter 11 8 Atmospheric pressure is a result of the air molecules in the environment. Evangelista Torricelli invented the barometer in 1643 to measure atmospheric pressure. Atmospheric pressure is 29.9 inches of mercury or 760 torr at sea level. Atmospheric Pressure

Chapter 11 9 Standard pressure is the atmospheric pressure at sea level, 29.9 inches of mercury. –Here is standard pressure expressed in other units: Units of Pressure

Chapter The barometric pressure is 27.5 in. Hg. What is the barometric pressure in atmospheres? We want atm; we have in. Hg. Use 1 atm = 29.9 in. Hg: = atm27.5 in. Hg × 1 atm 29.9 in Hg Gas Pressure Conversions

Chapter There are three variables that affect gas pressure: 1)The volume of the container. 2)The temperature of the gas. 3)The number of molecules of gas in the container. Variables Affecting Gas Pressure

Chapter When the volume decreases, the gas molecules collide with the container more often and the pressure increases. When the volume increases, the gas molecules collide with the container less often and the pressure decreases. Volume vs. Pressure

Chapter When the temperature decreases, the gas molecules move slower and collide with the container less often and the pressure decreases. When the temperature increases, the gas molecules move faster and collide with the container more often and the pressure increases. Temperature vs. Pressure

Chapter When the number of molecules decreases, there are fewer gas molecules colliding with the side of the container, and the pressure decreases. When the number of molecules increases, there are more gas molecules colliding with the side of the container and the pressure increases. Molecules vs. Pressure

Chapter Robert Boyle trapped air in a J-tube using liquid mercury. He found that the volume of the air decreased as he added more mercury. When he halved the volume, the pressure doubled. Boyle’s Gas Experiment

Chapter Inversely proportional means two variables have a reciprocal relationship. Mathematically, we write: Boyle’s law states that the volume of a gas is inversely proportional to the pressure at constant temperature. V ∝V ∝ 1. P Boyle’s Law

Chapter If we introduce a proportionality constant, k, we can write Boyle’s law as follows: We can rearrange it to PV = k. Let’s take a sample of gas at P 1 and V 1, and change the conditions to P 2 and V 2. Because the product of pressure and volume is constant, we can write: P 1 V 1 = k = P 2 V 2 V = k × 1. P Boyle’s Law

Chapter To find the new pressure after a change in volume: To find the new volume after a change in pressure: V1 ×V1 × P1P1 P2P2 = V 2 P1 ×P1 × V1V1 V2V2 = P 2 Applying Boyle’s Law P factor V factor

Chapter A 1.50 L sample of methane gas exerts a pressure of 1650 mm Hg. What is the final pressure if the volume changes to 7.00 L? The volume increased and the pressure decreased as we expected. P1 ×P1 × V1V1 V2V2 = P mm Hg × 1.50 L 7.00 L = 354 mm Hg Boyle’s Law Problem

Chapter In 1783, Jacques Charles discovered that the volume of a gas is directly proportional to the temperature in Kelvin. This is Charles’s law. V ∝ T at constant pressure. Notice that Charles’s law gives a straight line graph. Charles’s Law

Chapter We can write Charles’s law as an equation using a proportionality constant, k. V = k T or = k Again, let’s consider a sample of gas at V 1 and T 1, and change the volume and temperature to V 2 and T 2. Because the ratio of volume to temperature is constant, we can write: V T V1V1 T1T1 V2V2 T2T2 = k = Charles’s Law

Chapter Below is an illustration of Charles’s law. As a balloon is cooled from room temperature with liquid nitrogen (–196  C), the volume decreases. Illustration of Charles’s Law

Chapter To find the new volume after a change in temperature: To find the new temperature after a change in volume: V1 ×V1 × T2T2 T1T1 = V 2 T1 ×T1 × V2V2 V1V1 = T 2 Applying Charles’s Law V factor T factor

Chapter A 275 L helium balloon is heated from 20  C to 40  C. What is the final volume at constant P? We first have to convert the temp from  C to K: 20  C = 293 K 40  C = 313 K V1 ×V1 × T2T2 T1T1 = V L × 313 K 293 K = 294 L Charles’s Law Problem

Chapter In 1802, Joseph Gay-Lussac discovered that the pressure of a gas is directly proportional to the temperature in Kelvin. This is Gay-Lussac’s Law. P ∝ T at constant temperature. Notice that Gay-Lussac’s law gives a straight line graph. Gay-Lussac’s Law

Chapter We can write Gay-Lussac’s law as an equation using a proportionality constant, k. P = k T or = k Let’s consider a sample of gas at P 1 and T 1, and change the volume and temperature to P 2 and T 2. Because the ratio of pressure to temperature is constant, we can write: P T P1P1 T1T1 P2P2 T2T2 = k = Gay-Lussac’s Law

Chapter Here is an illustration of Gay- Lussac’s law. As the temperature of a gas in a steel cylinder increases, the pressure increases. Illustration of Gay-Lussac’s Law

Chapter To find the new volume after a change in temperature: To find the new temperature after a change in volume: P1 ×P1 × T2T2 T1T1 = P 2 T1 ×T1 × P2P2 P1P1 = T 2 Applying Gay-Lussac’s Law T factor P factor

Chapter A steel container of nitrous oxide at 15.0 atm is cooled from 25  C to – 40  C. What is the final volume at constant V? We first have to convert the temp from  C to K: 25  C = 298 K – 40  C = 233 K P1 ×P1 × T2T2 T1T1 = P atm × 298 K 233 K = 11.7 atm Gay-Lussac’s Law Problem

Chapter When we introduced Boyle’s, Charles’s, and Gay-Lussac’s laws, we assumed that one of the variables remained constant. Experimentally, all three (temperature, pressure, and volume) usually change. By combining all three laws, we obtain the combined gas law: P1V1P1V1 T1T1 P2V2P2V2 T2T2 = Combined Gas Law

Chapter To find a new volume when P and T change: To find a new pressure when V and T change: To find a new temperature when P and V change: T2T2 T1T1 V 2 = V 1 × P1P1 P2P2 × T2T2 T1T1 P 2 = P 1 × V1V1 V2V2 × V2V2 V1V1 T 2 = T 1 × P2P2 P1P1 × Applying the Combined Gas Law T factor V factor P factor

Chapter In a combined gas law problem, there are three variables: P, V, and T. Let’s apply the combined gas law to 10.0 L of carbon dioxide gas at 300 K and1.00 atm. If the volume and Kelvin temperature double, what is the new pressure? ConditionsPVT initial1.00 atm10.0 L300 K finalP2P L600 K Combined Gas Law Problem

Chapter T2T2 T1T1 P 2 = P 1 × V1V1 V2V2 × 600 K 300 K P 2 = 1.00 atm × 10.0 L 20.0 L × P 2 = 1.00 atm Combined Gas Law Problem

Chapter Vapor pressure is the pressure exerted by the gaseous vapor above a liquid when the rates of evaporation and condensation are equal. Vapor pressure increases as temperature increases. Vapor Pressure

Chapter Dalton’s law of partial pressures states that the total pressure of a gaseous mixture is equal to the sum of the individual pressures of each gas. P 1 + P 2 + P 3 + … = P total The pressure exerted by each gas in a mixture is its partial pressure, P n. Dalton’s Law

Chapter An atmospheric sample contains nitrogen, oxygen, and argon. If the partial pressure of nitrogen is 587 mm Hg, oxygen is 158 mm Hg, and argon is 7 mm Hg, what is the barometric pressure? P total = P nitrogen + P oxygen + P argon P total = 587 mm Hg mm Hg + 7 mm Hg P total = 752 mm Hg Dalton’s Law Calculation

Chapter Collecting a Gas Over Water We can measure the volume of a gas by displacement. By collecting the gas in a graduated cylinder, we can measure the amount of gas produced. The gas collected is referred to as “wet” gas since it also contains water vapor.

Chapter An ideal gas is a gas that behaves in a predictable and consistent manner. Ideal gases have the following properties: –gases are made up of very tiny molecules –gas molecules demonstrate rapid motion in straight lines and in random directions –gas molecules have no attraction for one another –gas molecules undergo elastic collisions –the average kinetic energy of gas molecules is proportional to the Kelvin temperature, KE ∝ T Ideal Gas Behavior

Chapter The temperature where the pressure and volume of a gas theoretically reaches zero is absolute zero. If we extrapolate T vs. P or T vs. V graphs to zero pressure or volume, the temperature is 0 Kelvin, or – 273  C. Absolute Zero

Chapter Recall, the pressure of a gas is inversely proportional to volume and directly proportional to temperature and the number of molecules (or moles): If we introduce a proportionality constant, R, we can write the equation: P ∝P ∝ nT. V P = RnT. V Ideal Gas Law

Chapter We can rearrange the equation to read: PV = nRT This is the ideal gas law. The constant R is the ideal gas constant and has a value of atm  L/mol  K Ideal Gas Law

Chapter How many mole of hydrogen gas occupy L at STP? At STP, T = 273K and P = 1 atm. Rearrange the ideal gas equation to solve for moles: n = PV. RT n = (1 atm)(0.500 L). ( atm  L/mol  K)(273K) n = moles Ideal Gas Law Problem

Chapter Gases have variable shape and volume. The pressure of a gas is directly proportional to the temperature and the number of mole present. The pressure of a gas is inversely proportional to the volume it occupies. Standard temperature and pressure are exactly 1 atmosphere and 0  C (273 K). Chapter Summary

Chapter Boyle’s law is: P 1 V 1 = P 2 V 2 Charles’s law is: Gay-Lussac’s law is: The combined gas law is: V1V1 T1T1 V2V2 T2T2 = P1P1 T1T1 P2P2 T2T2 = P1V1P1V1 T1T1 P2V2P2V2 T2T2 = Chapter Summary, continued

Chapter Dalton’s law of partial pressures is: P 1 + P 2 + P 3 + … = P total The ideal gas law is: PV = nRT R is the ideal gas constant: atm  L/mol  K Chapter Summary, continued