Mapping our Universe for Precision Cosmology Max Tegmark, MIT.

Slides:



Advertisements
Similar presentations
Max Tegmark University of Pennsylvania Max Tegmark University of Pennsylvania MEASURING THE UNIVERSE.
Advertisements

What Figure of Merit Should We Use to Evaluate Dark Energy Projects? Yun Wang Yun Wang STScI Dark Energy Symposium STScI Dark Energy Symposium May 6, 2008.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
1 ACT  Atacama Cosmology Telescope  Funded by NSF  Will measure CMB fluctuations on small angular scales  Probe the primordial power spectrum and the.
What is Dark Energy? Josh Frieman Fermilab and the University of Chicago.
Concluding Comments For the Course Cosmology Fascinating Past Highly accomplished present (for example, the material covered in this course). Really exciting.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Max Tegmark Dept. of Physics, MIT SLAC Summer Institute August 3-4, 2009 SDSS slideshow.
What can we learn about neutrinos from cosmology? Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
X-ray Optical microwave Cosmology at KIPAC. The Survey 5000 square degrees (overlap with SPT and VISTA) Five-band (grizY) + VISTA (JHK) photometry to.
Progress on Cosmology Sarah Bridle University College London.
Dark Energy and Cosmic Sound Daniel Eisenstein (University of Arizona) Michael Blanton, David Hogg, Bob Nichol, Nikhil Padmanabhan, Will Percival, David.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
The Evolution of the Universe Nicola Loaring. The Big Bang According to scientists the Universe began ~15 billion years ago in a hot Big Bang. At creation.
Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...) Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
Yi Mao, MIT Collaborators: Max Tegmark, Alan Guth, Matias Zaldarriaga, Matt McQuinn, Oliver Zahn, Tom Faulkner, Ted Bunn, Serkan Cabi Constraining cosmological.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
The Atacama Cosmology Telescope New Views of the Universe December 11, 2005 Joe Fowler Princeton University.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
Cosmic Microwave Background Radiation: z= z= 10 David Spergel Princeton University.
The Revolution for the Rest of Us George Musser 6 October 2006.
The KAT/SKA project and Related Research Catherine Cress (UKZN/KAT/UWC)
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmic collisions: dark matter, dark energy & inflation Max Tegmark, Penn/MIT.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
The measurement of q 0 If objects are observed at large distances of known brightness (standard candles), we can measure the amount of deceleration since.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
More on the A-Word Credit: Anthony Aguirre, Martin Rees, Frank Wilczek Blame: Max Tegmark.
Large-Scale Structure & Surveys Max Tegmark, MIT.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
FIRST LIGHT A selection of future facilities relevant to the formation and evolution of galaxies Wavelength Sensitivity Spatial resolution.
Homework for today was WORKBOOK EXERCISE: “Expansion of the Universe” (pg in workbook)
Two useful methods for the supernova cosmologist: (1) Including CMB constraints by using the CMB shift parameters (2) A model-independent photometric redshift.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Determining cosmological parameters with the latest observational data Hong Li TPCSF/IHEP
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
Neutrinos in cosmology Credit: SDSS team, Andrew Hamilton Blame: Max Tegmark.
Cheng Zhao Supervisor: Charling Tao
Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 The scale frontier MT & Zaldarriaga, arXiv:
Cosmology That part of astronomy which deals with the nature of the universe as a whole.
Wilkinson Microwave Anisotropy Probe (WMAP) By Susan Creager April 20, 2006.
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
CMB physics Zong-Kuan Guo 《现代宇宙学》
Harrison B. Prosper Florida State University YSP
Towards the first detection using SPT polarisation
The Dark Energy Survey Probe origin of Cosmic Acceleration:
9/17/2018 Cosmology from Space Max Tegmark, MIT.
The History of the Universe in 60 Minutes
Springel, Frenk & White 2006, Nature, 440, 11
Cosmology: SNC 1D.
Cosmology from Large Scale Structure Surveys
Presentation transcript:

Mapping our Universe for Precision Cosmology Max Tegmark, MIT

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Smorga sbord THE COSMIC SM Ö RG Å SBORD Galaxy surveys Microwave background Gravitational lensing Big Bang nucleosynthesis Supernovae Ia Galaxy clusters Lyman  forest Neutral hydrogen tomography

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 What have we learned?

Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy To 0th order: Cosmological functions   (z), G(z,k), P s (k), P t (k) H(z) (Graphics from Gary Hinshaw/WMAP team)

Fluctuation generator Fluctuation amplifier Hot Dense Smooth Cool Rarefied Clumpy H(z) P(k,z) To 1st order: (Graphics from Gary Hinshaw/WMAP team)

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Formation movies

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Par movies

Cmbgg OmOl 4% 21% 75% Using WMAP + SDSS LRGs:

Cmbgg OmOl Standard model parameters: Cosmology Particle physics Required Optional C = h = G = k b = q e = 1 

What we’ve learned about dark energy from SN Ia Yun Wang, arXiv:

Max Tegmark Dept. of Physics, MIT ITP June 21, par movies Ly  LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/ updates CMB

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 CMB progress

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 exp 9911 CMB Shown at DM2000:

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 boom CMB Shown at DM2002:

Max Tegmark Dept. of Physics, MIT ITP June 21, dpi CMB Shown at DM2004:

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Boom zoom For Guth & Kaiser 2005, Science +B03, … Shown at DM2006:

Reichardt et al 2008, arXiv: Shown at DM2008:

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 WMAP7 2010

Max Tegmark Dept. of Physics, MIT ITP June 21, GHz J. W. Fowler et al, arXiv:

But where have all the clusters gone? THE PROMISE: Report of the Dark Energy Task Force 2006: The South Pole Telescope (SPT) is a 10-meter submillimeter-wave telescope with a 1000-element bolometric focal plane array with channels at 90, 150, 220 and 270 GHz. It would conduct a deep, large solid angle (4000 square degree) galaxy- cluster survey using the Sunyaev-Zel’dovich ef- fect. About 20,000 clusters with masses greater than 2 × solar masses are expected to be dis- covered. 5 clusters/square degree RESULTS SO FAR: SPT: about 0.3 clusters/square degree (4/40 sq deg in Staniszewski et al 2008, now ~260/1000 sq deg in pipeline/T. Stark) ACT: about 0.2 clusters/square degree (J. Sievers, priv. comm)

Planck launched 5/14-09 and works well:

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Galaxy clustering progress