Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum.

Slides:



Advertisements
Similar presentations
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Advertisements

outline introduction experimental setup & status
Ion Beam Analysis techniques:
Absolute neutrino mass determination with the experiment KATRIN
HQL2004 June 1. Jochen Bonn Institut für Physik, Johannes Gutenberg-Universität, Mainz, Evidence for neutrino masses Neutrino mass measurements Tritium.
Neutrino Mass Determination from Tritium-  -decay : From Mainz to KATRIN Björn Flatt SLAC, Motivation Neutrino mass determination.
1 CRACOW EPIPHANY CONFERENCE ON NEUTRINOS AND DARK MATTER January 2006, Cracow, Poland ● Introduction ● Neutrino mass determination ● The Karlsruhe.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
The CP-violation experiments NA48 at CERN Manfred Jeitler Institute of High Energy Physics of the Austrian Academy of Sciences RECFA meeting Innsbruck,
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
April-June )Oscillations: 2)Kinematics in weak decays: 3) 0 double beta decay: ?
GERDA: GERmanium Detector Array
Outline Directness? The Various Techniques: for completeness Astrophysics/Cosmology (very short) Nuclear and Particle Physics: heart of the talk beta decay.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
Atmospheric Neutrino Oscillations in Soudan 2
Hamish Robertson, CENPA, University of Washington Direct probes of neutrino mass Neutrino Oscillation Workshop NOW2014, Otranto Italy Sept. 8.
Direct Determination of Neutrino Mass
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Neutrino Physics Caren Hagner Universität Hamburg Caren Hagner Universität Hamburg Part 3: Absolute neutrino mass Introduction beta decay double beta decay.
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
KATRIN - The Karlsruhe Tritium Neutrino Experiment The Karlsruhe Tritium Neutrino Experiment H.H. Telle Department of Physics, University of Wales Swansea.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
Absolute neutrino mass scale and the KATRIN experiment Otokar Dragoun for the KATRIN Collaboration Nuclear Physics Institute of the ASCR, Řež
Hamish Robertson, CENPA, University of Washington Progress toward measuring the mass of the neutrino The Ohio State University, February 3, 2015.
A mass-purification method for REX beams
The KATRIN experiment M. Beck Institut Für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-str Münster Motivation The Experiment.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Study of neutrino oscillations with ANTARES J. Brunner.
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
Experimental methods for direct measurements of the Neutrino Mass Part - 1 Como – 30/05/2006.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
John Thornby 4 th April Development of a Novel Charge Spectrometer IoP Nuclear and Particle Physics Divisional Conference John Thornby University.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Hamish Robertson, CENPA, University of Washington Onward to the ‘final state’ in measuring the mass of the neutrino ACFI, December 14, 2015.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
1/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE Microcalorimenter.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
T2K Status Report. The Accelerator Complex a Beamline Performance 3 First T2K run completed January to June x protons accumulated.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Neutrino physics: The future Gabriela Barenboim TAU04.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
Kinematic Determination of Neutrino Mass
Siara Fabbri University of Manchester
Three roads to neutrino masses
Direct Measurements Working Group
KATRIN: A next generation neutrino mass experiment
MARE Microcalorimeter Arrays for a Rhenium Experiment
MARE (microcalorimeter array for a rhenium experiment)
Presentation transcript:

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 neutrino masses in particle physics & cosmology (mass scenarios, ´s as HDM) micro-calorimeters (Mibeta: 187 Re in AgReO 4 ) electrostatic spectrometers (Mainz, Troitsk, KATRIN) Direct Measurements of the Neutrino Mass

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 neutrino masses and schemes „normal“ mass hierarchy m 1 <m 2 <m 3 hierarchical quasi-degenerate first task: decide mass scenario

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 neutrino masses and cosmology second task: decide whether contribute as Hot Dark Matter ´s per flavor from BB! (without annihilation; astro-ph/ )  [% of  cr ]

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10,  decay:  decay kinematics: microcalorimeters MAC-E spectrometers cosmology & structure formation astrophysics: SN ToF measurements Neutrino Mass Measurements Strategies 3H3H NEMO3 76 LNGS ´90-´03 (71.7 kg×y) |m ee |= eV D.N. Spergel et al:  m < 0.69 eV (95%CL) S.W. Allen et al:  m = 0.56 eV (best fit) SuperK, SNO, OMNIS + grav.waves: potential for ~1eV sensitivity? 187 Re 2 

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 phase space determines energy spectrum transition energy E 0 = E e + E  (+ recoil corrections) experimental observable  – decay kinematics  strong source (high count rate near E 0 )  small endpoint energy E 0  excellent energy resolution  long term stability  low bg rate E e -E 0 [eV] rel. rate [a.u.] theoretical  spectrum near endpoint m = 0eV m = 1eV dN/dE = K × F(E,Z) × p × E tot × (E 0 -E e ) × [ (E 0 -E e ) 2 – m 2 ] 1/2

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004  – decay kinematics and 0  decay  -decay kinematics0  decay direct mass determination only possible for Majorana ´s if masses are not resolved  average neutrino masscoherent sum of mass EV´s m 2 ( e ) =  |U ei 2 | m( i ) 2 m ee ( ) = |  |U ei | 2 e i  (i) m( i ) | incoherent sum, real average, partial cancellation possible since 0 ≤ |U ei 2 | ≤ 1(not fully since SNO says: no max. solar mixing) m 2 ( e ) vs. m ee ( ): complementary information, differences due to Dirac neutrino CP-phases Problems with nuclear matrix elements Other processes (right-handed currents, Susy-particles,...)

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004  calorimeters for 187 Re  decay neutrino mass measurement with array of 10 AgReO 4 crystals  lower pile up  higher statistics MIBETA experiment (Milano, Como, Trento) M.Sisti et al, NIM A520(2004)125 A.Nucciotti et al, NIM A520(2004)148 C. Arnaboldi et al, PRL 91, (2003) MANU2 experiment (Genoa) F. Gatti, Nucl. Phys. B (Proc.Suppl.) 91 (2001) 293) E 0 = 2.46 keV T op ~ mK

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 fit with function free fit parameters:   endpoint energy  m 2   spectrum normal.  pile-up amplitude  background level  calorimeters for 187 Re  decay Kurie plot of 6.2 × Re  decay events above 700 eV Mibeta

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, Re  decay endpoint and m 187 Re  decay endpoint and m m 2 = -112 ± 207 ± 90 eV 2 m < 15 eV (90%CL) future: proposal for a new calorimeter expt. with ~2-3 eV sensitivity foreseen 2007 (?) F. Gatti ( ´04): 0.5g Re 1–1.7 eV sensitivity expected E 0 = ± 0.5 stat ± 1.6 syst eV (8751 h*mg, NIMA520, 2004) = ± 0.8 stat ± 1.5 syst eV (4485 h*mg, PRL91,2003) fit range: 0.9 to 4 keV fit function

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 principle of an electrostatic filter with magnetic adiabatic collimation (MAC-E)

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 principle of an electrostatic filter with magnetic adiabatic collimation (MAC-E) adiabatic magnetic guiding of  ´s along field lines in stray B-field of s.c. solenoids: B max = 6 T B min = 3×10 -4 T energy analysis by static retarding E-field with varying strength: high pass filter with integral  transmission for E>qU

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 magnetic spectrometers & MAC-E filters

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 latest results from the MAINZ experiment free fit for a nex, m 2 for last 170eV frozen T 2 on HOP graphite T=1.86K A=2cm 2, d~130ML (~45nm) 20mCi activity spectr.: l=2m, Ø=0.9m  E=4.8eV improvements in systematics:  roughening of T 2 film  inelastic scattering  self charging of T 2 film condensed T 2 film  neighbour excitations W.Kolos et al., PRA37(1988): a nex =5.9%;  =14.6eV Mainz : a nex =(5±1.6±2.2)% with  =16.1eV C. Kraus, Eur.Phys.J. C33, s01 (2004), ´04

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 aim:improvement of m by one order of magnitude (2eV  0.2eV )  improvement of uncertainty on m 2 by 100 (4eV 2  0.04eV 2 ) statistics:  stronger Tritium source (>>10 10  ´s/sec)  longer measurement (~100 days  ~1000 days) energy resolution:   E/E=B min /B max  spectrometer with  E=1eV  Ø 10m UHV vessel From current to future experiments Mainz:Troitsk: m 2 = -1.2(-0.7) ± 2.2 ± 2.1 eV 2 m 2 = -2.3 ± 2.5 ± 2.0 eV 2 m < 2.2(2.3) eV (95%CL) m < 2.05 eV (95%CL) C. Weinheimer, Nucl. Phys. B (Proc. Suppl.) 118 (2003) 279V. Lobashev, Nucl.Phys. A719 (2003) 153c C. Kraus, Eur.Phys.J. C33 (neighbour excit´s self-consistent)(allowing for a step function near endpoint)

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 The KArlsruhe TRItium Neutrino Experiment Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 KATRIN ~70 m beamline, 40 s.c. solenoids KATRIN location at FZKarlsruhe

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Windowless Gaseous Tritium Source at Tritium Laboratory Karlsruhe single WGTS solenoid (l=1m) WGTS parameters: total length l = 10m, inner diam. Ø = 90mm, B source = 3.6T, isotopic purity > 95% T 2 T = (27± 0.03)K (l=10m)

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 WGTS source characteristics p inj = 3.0 × mbar ( at T=27K) q inj = 1.85 mbar l/s = mol./s = 4.7 Ci/s (~ 40g T 2 per day if no closed loop) isotopic purity (±2‰) monitored by Laser Raman spectroscopy

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 electrostatic spectrometers tandem design electrostatic pre-filtering & analysis of tritium ß-decay electrons ~10 10  ´s/sec ~10 3  ´s/sec ~10  ´s/sec (qU=E 0 -25eV) pre-spectrometer main spectrometer fixed retarding potential ≈ 18.45kVvariable retarding potential 18.5 – 18.6 kV Ø = 1.7m; length = 3.5m Ø = 10m; length = 24m  E ≈ 60 eV  E = 0.93 eV (18.575keV)  detailed el.-magn. design!

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 KATRIN Main Spectrometer  stainless steel vessel (Ø=10m & l=24m) on HV potential  minimisation of bg  UHV: p ≤ mbar  „massless“ inner electrode system UHV requirements: outgassing < mbar l/s inner surface ~ 800m 2 volume to pump ~ 1500m 3 inner electrode installed in Mainz spectrometer for background tests intrinsic det. bg 1.6mHz 2.8mHz Mainz V results

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Detector concept segmented PIN-diode 44 x 44 mm² 64 segments 5x5 mm², bonded onto ceramics with FET stage 8x8 Pin-Diode from Canberra SemiConductors the prespectrometer detector: prototype of KATRIN main detector 64 channel FET stage backside of UHV flange, with board for 64 preamps PIN diode array T-structure multipixel PIN diode

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 KATRIN sensitivity & discovery potential design optimisation ´01  ´03  statistical accuracy on m 2 LoI 9/2001

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, × stronger gaseous source (Ø=75mm  Ø=90mm) required Ø=10m spectrometer) isotopic T purity 70%  95% design optimisation ´01  ´03  statistical accuracy on m 2 LoI 9/2001 KATRIN sensitivity & discovery potential

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, × stronger gaseous source (Ø=75mm  Ø=90mm) required Ø=10m spectrometer) optimised measuring point distribution (~5 eV below E 0 ) design optimisation ´01  ´03  statistical accuracy on m 2 LoI 9/2001 reference KATRIN sensitivity & discovery potential

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, × stronger gaseous source (Ø=75mm  Ø=90mm) required Ø=10m spectrometer) optimised measuring point distribution (~5 eV below E 0 ) active background reduction by inner electrode system, low background detector (needs further detailed tests) LoI 9/2001 reference design optimisation ´01  ´03  statistical accuracy on m 2 KATRIN sensitivity & discovery potential

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 KATRIN - systematic uncertainties 1. inelastic scatterings of ß´s inside WGTS requires dedicated e-gun measurements, unfolding techniques for response fct. 2. HV stability of retarding potential required: ~ppm level precision HV divider (PTB), monitor spectrometer beamline 3. fluctuations of WGTS column density required < 0.1% stability rear detector, Laser-Raman spectroscopy, T=30K stabilisation, e-gun measurements 4. WGTS charging due to remaining ions (MC:  <20mV) inject low energy meV electrons from rear side, diagnostic tools available 5. final state distribution reliable quantum chem. calculations unaccounted variances  2 lead to shift of m 2 : a few contributions with each  m 2 ≤ eV 2

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 5 KATRIN sensitivity & discovery potential m < 0.2eV (90%CL) m = 0.35eV (5  ) m = 0.3eV (3  ) sensitivity discovery potential expectation: after 3 full beam years  syst ~  stat

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 status of hardware activities pre-spectrometer differential pumping section WGTS pre-spec detector assembly

Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 conclusions & outlook  absolute neutrino mass of prime importance  microcalorimeter (MIBETA 187 Re): m <15eV(90%CL)  2eV in 2007?  MAC-E spectrometers (Mainz, Troitsk) m <2.3eV(95%CL) (sensitivity limit)  KATRIN sensitivity m <0.2eV(90%CL) discovery potential m =0.35eV at 5  design optimized; first components; commissioning in 2008