Schematics for simplified energy deposition study in IR7 R. Assmann.

Slides:



Advertisements
Similar presentations
FLUKA studies: channeled ions on LHC IP7 L. Lari (CERN & IFIC (CSIC-UV)) D. Mirarchi (CERN & ICL) A. Lechner (CERN) ColUSM#32 December the 6 th,
Advertisements

Collimation MDs LHC Study Working Group Daniel Wollmann for the Collimation-Team, BLM-Team, Impedance-Team, … LHC Study Working Group,
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
Beam Loss in the Extraction Line for 2 mrad Crossing Angle A.Drozhdin, N.Mokhov, X.Yang.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
A.Seryi, Nov 22, 2005, slide 1 Evaluation of Aug9 2mrad Use 2mrad extraction, version Aug 9, Use high.
The ATS MD part III (Achromatic Telescopic Squeezing scheme) Participants: Any (active) volunteers Goal: 1)MD1 (S. Fartoukh & R. Assmann  10h): “Pre-squeeze’’
GRD - Collimation Simulation with SIXTRACK - MIB WG - October 2005 LHC COLLIMATION SYSTEM STUDIES USING SIXTRACK Ralph Assmann, Stefano Redaelli, Guillaume.
New ALICE Beam Pipe: Injection Protection C. Bracco on Behalf of ABT/BTP Acknowledgment: M. Giovannozzi.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
1 IR with elliptical compensated solenoids in FCC-ee S. Sinyatkin Budker Institute of Nuclear Physics 13 July 2015, CERN.
Status of Phase II Energy Loss Studies 1. FLUKA with “simple” CERN-provided input file modeling ~40m around primary collimators used for all SLAC studies.
Concept of a Collimation System with Enhanced Operational Stability and Performance.
REQUIREMENTS FOR FCC DILUTION KICKERS AND BEAM DUMP LINE GEOMETRY F. Burkart, W. Bartmann, M. Fraser, B. Goddard, T. Kramer FCC dump meeting 18 th June.
Considerations on laser-p+ beam merging for CB, BG, PM.
1 st September 2005LHC-LUMI 05 - G.Arduini – CERN/AB Optical requirements for the magnetic lattice of the high energy injectors (SSPS in the SPS tunnel)
EMMA injection & extraction Takeichiro Yokoi(Oxford University)
CERN 9 March 2006Biryukov: crystal collimation1 Simulations and interpretation of crystal collimation experiments at RHIC and Tevatron CERN, 9 March 2006.
Collimator and beamline heating External Review of the LHC Collimation Project CERN Wed 30/6/2004.
LHC Crystal MD 22/09/2015 – LSWG #7 R. Rossi for the LHC Collimation team and the UA9 Collaboration.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
LER Workshop, October 11, 2006LER & Transfer Line Lattice Design - J.A. Johnstone1 LHC Accelerator Research Program bnl-fnal-lbnl-slac Introduction The.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
Simulation comparisons to BLM data E.Skordis On behalf of the FLUKA team Tracking for Collimation Workshop 30/10/2015 E. Skordis1.
LET in the ILC DRs with Minimal Tuning Knobs and other assorted information James Jones Deepa Angal-Kalinin and Frank Jackson.
Heat Deposition Pre-Evaluation In the context of the new cryo-collimator and 11-T dipole projects we present a review of the power deposition studies on.
Case study: Energy deposition in superconducting magnets in IR7 AMT Workshop A.Ferrari, M.Magistris, M.Santana, V.Vlachoudis CERN Fri 4/3/2005.
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
R. Assmann, June 2009 Operational Experience with the LHC Collimation System R. Assmann, CERN 8/6/2009 for the Collimation Project Team Visit TU Munich.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
DRAFT Simulation of Errant Beams in the BDS How many bunches will damage beamline components or quench SC coils? Analysis Steps 1.Use TRANSPORT with BDS.
Design challenges for head-on scheme Deepa Angal-Kalinin Orsay, 19 th October 2006.
R.W. Assmann, V. Boccone, F. Cerutti, M. Huhtinen, A. Mereghetti
Oleksiy Dolinskyy 1st December, 2014
Alignment and beam-based correction
Collimation Concept for Beam Halo Losses in SIS 100
M. Sullivan for the SLAC SuperB Workshop Jan , 2009
Problem: A kicker failure can deposit 9 x 1011 protons on any metallic
Efficiency studies for CRYSTAL experiment in SPS
Large Booster and Collider Ring
The MDI at CEPC Dou Wang, Hongbo Zhu, Huamin Qu, Jianli Wang, Manqi Ruan, Qinglei Xiu, Sha Bai, Shujin Li, Weichao Yao, Yanli Jin, Yin Xu, Yiwei Wang,
The small crossing angle layout - where are we and what do we do now?
AD & I : BDS Lattice Design Changes
FCC-hh injection group 7

Beam collimation for SPPC
Status of energy deposition studies in IR3
The 2mrad horizontal crossing angle IR layout for the ILC
Progress activities in short bunch compressors
CEPC main ring magnets’ error effect on DA and MDI issues
CNGS Proton beam line: news since NBI2002 OUTLINE 1. Overview
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
Why do BLMs need to know the Quench Levels?
Global aperture measurements at 450 GeV with 170 mrad crossing angle
Efficiency of Two-Stage Collimation System
Micro Status Report of SLAC Phase II Plan Tom Markiewicz SLAC
FLUKA Energy deposition simulations for quench tests
Rotation Solids In Contact.
IR Lattice with Detector Solenoid
Collimator Efficiency Study
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Integration of Detector Solenoid into the JLEIC ion collider ring
Possibility of MEIC Arc Cell Using PEP-II Dipole
Upgrade on Compensation of Detector Solenoid effects
Sha Bai CEPC AP meeting Work summary Sha Bai CEPC AP meeting
Presentation transcript:

Schematics for simplified energy deposition study in IR7 R. Assmann

Parallel beam separation:224 mm MBW.D6L7.B m3.40m DRIFT m0.84m MBW.C6L7.B m3.40m TCPV m0.20m1.571rad TCPH m0.20m0.000rad TCPS m0.20m2.356rad MBW.B6L7.B m3.40m DRIFT m0.84m MBW.A6L7.B m3.40m Parallel beam separation:194 mm TCS.001.B m2.00m0.717rad TCSH.001.B m2.00m0.717rad TCS.002.B m2.00m2.469rad TCSH.002.B m2.00m2.469rad TCS.0016.B m2.00m0.008rad TCSH.0016.B m2.00m0.008rad BPMW.B5L7.B m MQWA.D5L7.B m3.11m Length of dogleg: 40m Horizontal displacement: 0.03m Kick angle: ± 0.38 mrad Note: TCSH installed only for phase 2! Beam2 collimators put around beam2!

194mm 224mm TCP 40m TCS TCSH QUAD Beam 1 Beam 2

Dogleg bends Ins. Type Numb. L [m] Nom. B Op. TeV Aper. sep. IR1 MBXW 2* T (770 A) mm IR3 MBW 2* T (700 A) mm IR5 MBXW 2* T (770 A) mm IR7 MBW 2* T (700 A) mm Take operating B, making sure that 0.38mrad are obtained with 7 TeV! Magnet contact: Suitbert Ramberger. Beam pipes:Material Inner radiusThickness wallLocation Cu52 mm2 mmDogleg Cu80 mm2 mmCollimators Cu29x51 mm 2 2 mmQD Cu51x29 mm 2 2 mmQF Note: E.g. quadrupole is QF for beam1 and QD for beam2!

Beam Loss Maps Impact of 600,000 protons at – primary collimator 1 (vertical) – primary collimator 2 (horizontal) – primary collimator 3 (skew 45 deg) Specify impact offset and angle Beam loss map (absorption = inelastic interaction)

Definition of Jaw Rotation x y  Beam goes into the plane

Loss Map & Impact TCP 1 # 1=icoll 2=nimp 3=nabs 4=imp_av 5=imp_sig E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E /115900_ Divergence x [urad]: 0.0 Divergence y [urad]: 17.0 Aperture [mm]: 1.22  =  / protons absorbed

Efficiency TCP 1 10 sigma [e-4] : 7.67

Loss Map & Impact TCP /123240_ Divergence x [urad]: Divergence y [urad]: 0.00 Aperture [mm]: 1.63 # 1=icoll 2=nimp 3=nabs 4=imp_av 5=imp_sig E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-03  = protons absorbed

Efficiency TCP 2 10 sigma [e-4] : 11.42

Loss Map & Impact TCP /114626_ Divergence x [urad]: Divergence y [urad]: Aperture [mm]: 1.44 # 1=icoll 2=nimp 3=nabs 4=imp_av 5=imp_sig E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E protons absorbed  = 3  /4

Efficiency TCP 3 10 sigma [e-4] : 4.69