1 Problems of Perfect Multi- Secret Sharing Schemes Advisor: 阮夙姿教授 Presenter: 蔡惠嬋 Date: 2008/08/11 國立暨南國際大學資訊工程學系.

Slides:



Advertisements
Similar presentations
Diffie-Hellman Diffie-Hellman is a public key distribution scheme First public-key type scheme, proposed in 1976.
Advertisements

Attacking Cryptographic Schemes Based on Perturbation Polynomials Martin Albrecht (Royal Holloway), Craig Gentry (IBM), Shai Halevi (IBM), Jonathan Katz.
How to Collaborate between Threshold Secret Sharing Schemes Daoshun Wang, Ziwei YeXiaobo Li Tsinghua University, ChinaUniversity of Alberta, Canada.
國立暨南國際大學 National Chi Nan University A Study of (k, n)-threshold Secret Image Sharing Schemes in Visual Cryptography without Expansion Presenter : Ying-Yu.
A Perfect Threshold Secret Sharing Scheme to Identify Cheaters Marco Carpentieri Designs, Codes and Cryptography 5(3): , May 1995 Presented by Po-Kun.
IEEE TRANSACTIONS ON IMAGE PROCESSING,2007 指導老師:李南逸 報告者:黃資真 Cheating Prevention in Visual Cryptography 1.
Introduction to Modern Cryptography, Lecture 11 1) More about efficient computation: Montgomery arithmetic, efficient exponentiation 2)Secret Sharing schemes.
Web-based Spoken English Training System with American Accent 線上美式英文口音訓練系統 指導教授:陳恆佑老師 學生:王舜霈 Date: June 25th, 2008 國立暨南國際大學 資訊工程學系碩士班畢業成果展 1.
Speaker: Pei-Ni Tsai Adviser: Dr. Kai-Wei Ke. Outline Introduction Hierarchical Resource Allocation Resource Allocation Complete share Guard External.
Announcements: SHA due tomorrow SHA due tomorrow Last exam Thursday Last exam Thursday Available for project questions this week Available for project.
Part 4 b Forward-Backward Algorithm & Viterbi Algorithm CSE717, SPRING 2008 CUBS, Univ at Buffalo.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
2003/02/13 Chapter 1 1頁1頁 工程數學 (3) : Complex Variables Analysis 91 學年度 第二學期 國立中興大學 電機系 授課教師 范志鵬 助理教授 Textboobs: “Complex Variables with Applications”,
Sec final project A Preposition Secret Sharing Scheme for Message Authentication in Broadcast Networks 王怡君.
An Efficient Construction of Secret Sharing for Generalized Adversary Structure and Its Reduction Communications, Circuits and Systems, ICCCAS 2004.
On the Construction of Energy- Efficient Broadcast Tree with Hitch-hiking in Wireless Networks Source: 2004 International Performance Computing and Communications.
1 高等演算法 Homework One 暨南大學資訊工程學系 黃光璿 2004/11/11. 2 Problem 1.
Secret Sharing Algorithms
A new predictive search area approach for fast block motion estimation Kuo-Liang Chung ( 鍾國亮 ) Lung-Chun Chang ( 張隆君 ) 國立台灣科技大學資訊工程系暨研究所 IEEE TRANSACTIONS.
Security Arguments for Digital Signatures and Blind Signatures Journal of Cryptology, (2000) 13: Authors: D. Pointcheval and J. Stern Presented.
Improved Searchable Public Key Encryption with Designated Tester Author : Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, Dong Hoon Lee Presenter: Li-Tzu.
Page 1 Effective Synchronization Scheme for Impulse Radio Ultra Wideband Systems 適用於脈衝無線電超寬頻系統之有效率的同步 機制 東海大學.電機工程學系 溫志宏 教授.
-Artificial Neural Network- Chapter 3 Perceptron 朝陽科技大學 資訊管理系 李麗華教授.
1 Multiple Sequence Alignment 暨南大學資訊工程學系 黃光璿 2004/05/31.
南台科技大學 資訊工程系 Posture Monitoring System for Context Awareness in Mobile Computing Authors: Jonghun Baek and Byoung-Ju Yun Adviser: Yu-Chiang Li Speaker:
Design of double- and triple-sampling X-bar control charts using genetic algorithms 指導教授: 童超塵 作者: D. HE, A. GRIGORYAN and M. SIGH 主講人:張怡笳.
Copyright © 2010, SLA-aware load balancing for cloud datacenters 指導教授:王國禎 學生:黎中誠 國立交通大學資訊工程系 行動計算與寬頻網路實驗室.
Stochastic sleep scheduling (SSS) for large scale wireless sensor networks Yaxiong Zhao Jie Wu Computer and Information Sciences Temple University.
Copyright © 2012, A Minimum Cost Resource Allocation Approach for Cloud Data Centers 指導教授:王國禎 學生:連懷恩 國立交通大學資訊工程系 行動計算與寬頻網路實驗室 1.
Announcements: SHA due Tuesday SHA due Tuesday Last exam Thursday Last exam Thursday Available for project questions this week Available for project questions.
-Artificial Neural Network- Chapter 9 Self Organization Map(SOM) 朝陽科技大學 資訊管理系 李麗華 教授.
Secure Computation (Lecture 7-8) Arpita Patra. Recap >> (n,t)-Secret Sharing (Sharing/Reconstruction) > Shamir Sharing > Lagrange’s Interpolation for.
國立東華大學應用數學系 林 興 慶 Lin-Shing-Ching 指導教授 : 郭大衛 Vertex Ranking number of Graphs 圖的點排序數.
智慧型系統實驗室 iLab 南台資訊工程 1 Evaluation for the Test Quality of Dynamic Question Generation by Particle Swarm Optimization for Adaptive Testing Department of.
Secure Computation (Lecture 5) Arpita Patra. Recap >> Scope of MPC > models of computation > network models > modelling distrust (centralized/decentralized.
1 離散對數密碼系統 交通大學資訊工程系 陳榮傑. 2 Outline 離散對數問題 (Discrete Logarithm Problem) 離散對數演算法 (DL Algorithms) –A trivial algorithm –Shanks’ algorithm –Pollard’s algorithm.
Yu-Li Lin and Chien-Lung Hsu Department of Information Management, Chang-Gung University Information Science(SCI) Reporter: Tzer-Long Chen.
On the Cost of Reconstructing a Secret, or VSS with Optimal Reconstruction Phase Ronald Cramer, Ivan Damgard, Serge Fehr.
A Study on Measuring Distance between Two Trees 阮夙姿 教授 Advisor: 阮夙姿 教授 林陳輝 Presenter : 林陳輝.
1 一個新的代理簽章法 A New Proxy Signature Scheme 作 者 : 洪國寶, 許琪慧, 郭淑娟與邱文怡 報 告者 : 郭淑娟.
Introduction to Probability Theory ‧ 2- 2 ‧ Speaker: Chuang-Chieh Lin Advisor: Professor Maw-Shang Chang National Chung Cheng University Dept. CSIE, Computation.
Optimizing Robustness while Generating Shared Secret Safe Primes Emil Ong and John Kubiatowicz University of California, Berkeley.
Maximization of System Lifetime for Data-Centric Wireless Sensor Networks 指導教授:林永松 博士 具資料集縮能力無線感測網路 系統生命週期之最大化 研究生:郭文政 國立臺灣大學資訊管理學研究所碩士論文審查 民國 95 年 7 月.
Introduction to Belief Propagation
The Pennsylvania State University CSE597B: Special Topics in Network and Systems Security The Miscellaneous Instructor: Sencun Zhu.
Quaternion 靜宜大學資工系 蔡奇偉副教授 大綱  History of Quaternions  Definition of Quaternion  Operations  Unit Quaternion  Operation Rules  Quaternion Transforms.
Fair Blind Signature Based Authentication for Super Peer P2P Network Authors: Xiaoliang Wang and Xingming Sun Source: 2009, Information Technology Journal,
Secret Sharing Non-Shannon Information Inequalities Presented in: Theory of Cryptography Conference (TCC) 2009 Published in: IEEE Transactions on Information.
28 September 2005 Secret Sharing Amin Y. Teymorian Department of Computer Science The George Washington University.
1 Lect. 19: Secret Sharing and Threshold Cryptography.
1 An LSB Substitution base Information Hiding Technique 國立彰化師範大學 資訊工程學系教授兼系主任 蕭如淵 (Ju-Yuan Hsiao) 中華民國九十四年十二月十六日.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
南台科技大學 資訊工程系 Data hiding based on the similarity between neighboring pixels with reversibility Author:Y.-C. Li, C.-M. Yeh, C.-C. Chang. Date:
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A new social and momentum component adaptive PSO algorithm for image segmentation Expert Systems with Applications 38 (2011)
南台科技大學 資訊工程系 An effective solution for trademark image retrieval by combining shape description and feature matching 指導教授:李育強 報告者 :楊智雁 日期 : 2010/08/27.
Diffie-Hellman Key Exchange first public-key type scheme proposed by Diffie & Hellman in 1976 along with the exposition of public key concepts – note:
Hongyu Liang Institute for Theoretical Computer Science Tsinghua University, Beijing, China The Algorithmic Complexity.
Cryptographic methods. Outline  Preliminary Assumptions Public-key encryption  Oblivious Transfer (OT)  Random share based methods  Homomorphic Encryption.
Secret Sharing Schemes: A Short Survey Secret Sharing 2.
Linear, Nonlinear, and Weakly-Private Secret Sharing Schemes
Secret Sharing Schemes In cryptography, secret sharing schemes refers to any method for distributing a secret among a group of participants, each of which.
Cryptographic Protocols Secret sharing, Threshold Security
Adaptive TUF Packet Scheduling Scheme for OFDMA-based WiMAX Systems
Committed MPC Multiparty Computation from Homomorphic Commitments
IEEE Student Paper Contest
Threshold RSA Cryptography
For ASIACRYPT 2018 Constructing Ideal Secret Sharing Schemes based on Chinese Remainder Theorem Fuyou Miao University of Science and Technology of China.
Secret Sharing: Linear vs. Nonlinear Schemes (A Survey)
Cryptology Design Fundamentals
Cryptographic Protocols Secret Sharing, Threshold Security
Presentation transcript:

1 Problems of Perfect Multi- Secret Sharing Schemes Advisor: 阮夙姿教授 Presenter: 蔡惠嬋 Date: 2008/08/11 國立暨南國際大學資訊工程學系

2 Outline Introduction Topic 1: –A Perfect SSS on General Hypergraph-Based Prohibited Structure (G-HP Scheme) Topic 2: –MSSS for Proving Both Improvement Ratios –Two Optimal General MSSSs (GMS1, GMS2) Comparisons Conclusions

3 Secret Sharing Scheme (SSS) Introduction (1/4)

Introduction (2/4) 4 Secret Sharing Scheme (SSS) D : Distribution Algorithm R : Reconstruction Algorithm P1P1 P2P2 PnPn … D s s P1P1 P2P2 … R P t

Introduction (3/4) Dealer Participants P = {P 1, P 2, …, P n } Access structure (   2 P ) Prohibited structure (   2 P ) 5 x1x1 xnxn x2x2 P1P1 P2P2 PnPn … D s P = {P 1, P 2, P 3 }  = {{P 1, P 3 }, {P 2, P 3 }}  = {{P 1 }, {P 3 }, {P 1, P 2 }} P = {P 1, P 2, P 3 }  = {{P 1, P 3 }, {P 2, P 3 }}  = {{P 1 }, {P 3 }, {P 1, P 2 }}

(t, n)-threshold scheme (A. Shamir 1979, Blakley 1979) Information Rate (  )  = log(K) / log(S i ) A SSS is ideal if  = 1. 6 Introduction (4/4) K x y

7 Outline Introduction Topic 1: –A Perfect SSS on General Hypergraph- Based Prohibited Structure (G-HP Scheme) Topic 2: –MSSS for Proving Both Improvement Ratios –Optimal General MSSS Comparisons Conclusions and Future Work (r 1, r 2 )-HP Scheme G-HP Scheme

8 Preliminary – Hypergraph (1/2) Hypergraph H = (V, E) r-Uniform Hypergraph (r 1, r 2 )-Uniform Hypergraph General Hypergraph P1P1 P4P4 P2P2 P3P3 P5P5 P6P6 3-Uniform Hypergraph P1P1 P4P4 P2P2 P3P3 P5P5 P6P6 (2, 3)-Uniform Hypergraph General Hypergraph Source: Wikipedia

Preliminary - Related Work (2/2) 9 Graph Based

10 (r 1, r 2 )-Uniform Hypergraph H V(H) = P and |P| = n.  = {A| A  B for some B  E(H)}  {A | A  P and |A|  (r 1  1)}  = {A  P|  B  E(H), A  B and r 1  |A|  r 2 +1} Example: (2, 4)-HP Scheme  = {{P 1, P 5 }, {P 1, P 6 }, {P 2, P 5 }, {P 2, P 6 }, {P 1, P 2, P 3 }, {P 1, P 2, P 4 }, {P 1, P 3, P 4 }, {P 2, P 3, P 4 }}. (r 1, r 2 )-HP Scheme (1/3) P1P1 P2P2 P3P3 P4P4 P6P6 P5P5

11 (r 1, r 2 )-HP Scheme (2/3) P1P1 P2P2 P3P3 P4P4 P6P6 P5P5 (2, 4)-HP Scheme  = {{P 1, P 5 }, {P 1, P 6 }, {P 2, P 5 }, {P 2, P 6 } {P 1, P 2, P 3 }, {P 1, P 2, P 4 }, {P 1, P 3, P 4 }, {P 2, P 3, P 4 }}. Idea: Distribute a random number a i for each P i. Construct related polynomials. Distribution: Distribute a 1, a 2, …, a 6 to P 1, P 2, …, P 6. Construct f 1 (x) = K 2 x + K 1 mod q Construct f 2 (x) = A 21 x 2 + K 2 x + K 1 mod q

12 f 1 (x) = K 2 x +K 1 (mod q) f 2 (x) = A 21 x 2 + K 2 x + K 1 (mod q) P1P1 P2P2 P3P3 P4P4 P6P6 P5P5

13 G-HP Scheme (r 1, r 2, …, r v )-HP Scheme Distribute random numbers a 1, a 2, …, a n to P 1, P 2, …, P n. Observe Construct …

Information Rate  = log(K) / log(S i ) = 2/ (d +1), Comparisons between G-HA and G-HP schemes. 14 Performance Analysis G-HA Scheme 2007 G-HP Scheme 2008 Information Rate2 / (d +1) Public dataYesNo Time ComplexityO(mr 2 ) PerfectYes

15 Outline Introduction Topic 1: –A Perfect SSS on General Hypergraph-Based Prohibited Structure (G-HP Scheme) Topic 2: –MSSS for Proving Both Improvement Ratios –Optimal General MSSS Comparisons Conclusions and Future Work

16 Outline Introduction Topic 1: –A Perfect SSS on General Hypergraph-Based Prohibited Structure (G-HP Scheme) Topic 2: –MSSS for Proving Both Improvement Ratios –Two Optimal General MSSSs Comparisons Conclusions and Future Work GMS1 GMS2

17 Multi-SSS an extension of a single-SSS to deal with many secrets at the same time s1s1 s2s2 sMsM P1P1 P2P2 PnPn s1s1 s2s2 sMsM R P1P1 P2P2 P t … … …… D P1P1 P1P1 P2P2 P2P2 PnPn PnPn s s P1P1 P1P1 P2P2 P2P2 …… …… D D s s R R Preliminary(1/2)

Parameter Setup: P = {P 1, P 2, …, P n } s 1, s 2, …, s M : secrets x i : P i ’s secret share. h (r, s): two-variable one way function q : large prime 18 L. J. Pang, H. X. Li and Y. M. Wang, An Efficient and Secure Multi-Secret Sharing Scheme with General Access Structures, WUJNS, (PLW scheme)

19 GMS1 (1/2) x y f 1 (x) = s 1 + x mod q f 2 (x) = s 2 + x mod q f M (x) = s M + x mod q Secret Distribution: sisi f(d i,j )  h(r i, x i,j,1 )  h(r i, x i,j,2 )  …  h(r i, x i,j,k ) P i,j,1 P i,j,2 P i,j,k … x i,j,1 x i,j,2 x i,j,k h(r i, x i,j,1 )  h(r i, x i,j,2 )  …  h(r i, x i,j,k ) MSG i = { r i, h i,1, h i,2,…, h i,|  i | } Publish (d i,j, f(d i,j )) … d i,j = i  z + j, where z = max{n, |  1 |, |  2 |, …, |  M |} h i,j = Let  = (  1,  2, …,  M ) be the access structure for the secret s 1, s 2, …, s M, respectively. Say  i = {A i,1, A i,2, …, A i,|  i | }.

20 Secret Reconstruction: GMS1 (2/2) MSG i = { r i, h i,1, h i,2,…, h i,|  i | } P i,j,1 P i,j,2 P i,j,k … x i,j,1 x i,j,2 x i,j,k h(r i, x i,j,1 )  h(r i, x i,j,2 )  …  h(r i, x i,j,k ) h i,j  h(r i, x i,j,1 )  h(r i, x i,j,2 )  …  h(r i, x i,j,k ) x y sisi (d i,j, f(d i,j )) f i (d i,j ) – d i,j f i (x) = s i + x mod q f(d i,j ) =

x y f(d j )  h(r, x j,1 )  h(r, x j,2 )  …  h(r, x j,k ) 先直接公佈 l – 1 個點 P j,1 P j,2 P j,k … xj1xj1 xj2xj2 x jk h(r, x j,1 )  h(r, x j,2 )  …  h(r, x j,k ) Publish: MSG = { r, f(1), f(2), …, f(l – 1), h 1, h 2, …, h t } l 個秘密 {s 1, s 2,…, s l } (d j, f(d j )) Secret Distribution: 需要 l 個點 hj =hj = hj =hj = 21 GMS2 Observe access structures of each secret s i first.

Security Analysis (d i,j, f(d i,j )) must be computed by P k in A i,j by using his h(r i, x k ). Guessing probability of x i or f i (d i,j ) is the same. (1/q). Two variable one way function h(r i, x i,j ) 22 Security of GMS1 and GMS2 are the same as Shamir’s threshold scheme. Security of GMS1 and GMS2 are the same as Shamir’s threshold scheme.  Multi-use

23 Comparisons of general SSS (apply single secret) G-HPGMS1G-HATUMPLW IR2/(d+1)1 1/d1 Public Information Nok + 1  i=1 n (m i  c i ) No2(k + 1) PerfectYes Time ComplexityO(kr 2 )O(kr )O(kr 2 ) O(kr ) Comparisons (1/3 )

24 Comparisons of three general MSSS (apply multiple secrets) Comparisons (2/3 ) PLW schemeGMS1GMS2 Time Complexity O(M)O(M) Public Information Weak-PerfectNoYesNo MaxIR (AvIR)1/M

Comparisons (3/3 ) 25 With BBSWithout BBS Consider IRGMS1G-HP Scheme Consider CostGMS1 Given an Access Structure, choose a suitable SSS.

26 Conclusions Conclusions: Construct G-HP scheme. Theoretical prove of improvement ratios. Construct GMS1 and GMS2 schemes.

Thanks for your listening.