5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.

Slides:



Advertisements
Similar presentations
Communication Networks Recitation 3 Bridges & Spanning trees.
Advertisements

University of Calgary – CPSC 441.  We need to break down big networks to sub-LANs  Limited amount of supportable traffic: on single LAN, all stations.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
Ethernet Ethernet Computer Networks Computer Networks.
CPSC 441 TUTORIAL TA: FANG WANG HUBS, SWITCHES AND BRIDGES Parts of the slides contents are courtesy of the following people: Jim Kurose, Keith Ross:
Ethernet Ethernet Advanced Advanced Computer Networks.
5/31/05CS118/Spring051 twisted pair hub 10BaseT, 100BaseT, hub r T= Twisted pair (copper wire) r Nodes connected to a hub, 100m max distance r Hub: physical.
1 Computer Networks Internetworking Devices. 2 Repeaters Hubs Bridges –Learning algorithms –Problem of closed loops Switches Routers.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
1 Last class r Random Access Protocols m Slotted Aloha m Aloha m CSMA/CD m “Taking Turns” Protocols r Link-Layer Addressing Today r Ethernet, Hubs and.
5: DataLink Layer – Ethernet, Hubs and Switches.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
1 Interconnecting LAN segments Repeaters Hubs Bridges Switches.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Ethernet Ethernet Advanced Computer Networks Advanced Computer NetworksD12.
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
Connecting LANs, Backbone Networks, and Virtual LANs
Lecture 17 Ethernet r Widely deployed because: m First LAN technology m Simpler and less expensive than token LANs and ATM m Kept up with the speed race:
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
NUS.SOC.CS2105 Ooi Wei Tsang Application Transport Network Link Physical you are here.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer.
Chapter 5 Link Layer Link Layer5-1 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter5_2.
ECE 4450:427/527 - Computer Networks Spring 2015 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.1: Internetworking Dr. Nghi Tran.
Review: –Ethernet What is the MAC protocol in Ethernet? –CSMA/CD –Binary exponential backoff Is there any relationship between the minimum frame size and.
5: DataLink Layer 5a-1 18: Ethernet, Hubs, Bridges, Switches Last Modified: 10/27/2015 1:29:46 PM.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer LANs.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
Final Exam Wednesday 3/18/2015 Tech LR PM 1.
5: DataLink Layer5c-1 Today r Assign Homework m Ch5 #1,4,5,7,11,12 Due Wednesday October 22 m Ch5 #13-16,18,20 Due Monday, October 27 r Project #2 due.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer5-1 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r Multi-tier design provides.
5: DataLink Layer 5a-1 Bridges and spanning tree protocol Reference: Mainly Peterson-Davie.
4: DataLink Layer1 Hubs r Physical Layer devices: essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
Ethernet Ethernet Advanced Computer Networks Advanced Computer NetworksC13.
5: DataLink Layer5-1 Link Layer: Introduction Some terminology: r hosts and routers are nodes r communication channels that connect adjacent nodes along.
Introduction to Communication Networks – Dr. Michael Schapira Rothberg A413.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Chapter 3 Part 1 Switching and Bridging
Chapter 5 Link Layer A note on the use of these ppt slides:
Link Layer 5.1 Introduction and services
MAC Addresses and ARP 32-bit IP address:
Chapter 4 Data Link Layer Switching
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
ARP: Address Resolution Protocol
Chapter 3 Part 1 Switching and Bridging
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
EEC-484/584 Computer Networks
Chapter 6 The Link Layer and LANs
Connecting The Network Layer to Data Link Layer.
EEC-484/584 Computer Networks
18: Ethernet, Hubs, Bridges, Switches
Chapter 15. Connecting Devices
Chapter 5 Data Link Layer – Hub, Switch
Link Layer 5.1 Introduction and services
Presentation transcript:

5: DataLink Layer5-1 Link-layer switches

5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links at same rate m all nodes connected to hub can collide with one another m no frame buffering twisted pair hub

5: DataLink Layer5-3 Switch r link-layer device: smarter than hubs, take active role m store, forward Ethernet frames m examine incoming frame’s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured

5: DataLink Layer5-4 Switch: allows multiple simultaneous transmissions r hosts have dedicated, direct connection to switch r switches buffer packets r Ethernet protocol used on each incoming link, but no collisions; full duplex m each link is its own collision domain r switching: A-to-A’ and B- to-B’ simultaneously, without collisions m not possible with dumb hub A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6)

5: DataLink Layer5-5 Switch Table r Q: how does switch know that A’ reachable via interface 4, B’ reachable via interface 5? r A: each switch has a switch table, each entry: m (MAC address of host, interface to reach host, time stamp) m looks like a routing table! r Q: how are entries created, maintained in switch table? m something like a routing protocol? A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6)

5: DataLink Layer5-6 Switch: self-learning r switch learns which hosts can be reached through which interfaces m when frame received, switch “learns” location of sender: incoming LAN segment m records sender/interface pair in switch table A A’ B B’ C C’ A A’ Source: A Dest: A’ MAC addr interface TTL Switch table (initially empty) A 1 60

5: DataLink Layer5-7 Self-learning, forwarding: example A A’ B B’ C C’ A A’ Source: A Dest: A’ MAC addr interface TTL Switch table (initially empty) A 1 60 A A’ r frame destination unknown: flood A’ A r destination A location known: A’ 4 60 forwarding

5: DataLink Layer5-8 Switch: frame filtering/forwarding When frame received: 1. record link associated with sending host 2. index(search) switch table using MAC dest address 3. if entry found for destination then { if dest on segment is interface from which frame arrived then drop the frame (=filtering) else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived

5: DataLink Layer5-9 Interconnecting switches r switches can be connected together A B r Q: sending from A to G - how does S 1 know to forward frame destined to G via S 4 and S 3 ? r A: self learning! (works exactly the same as in single-switch case!) S1S1 C D E F S2S2 S4S4 S3S3 H I G

5: DataLink Layer5-10 Self-learning multi-switch example Suppose C sends frame to I, I responds to C r Q: show switch tables and packet forwarding in S 1, S 2, S 3, S 4 A B S1S1 C D E F S2S2 S4S4 S3S3 H I G

5: DataLink Layer5-11 Self-learning multi-switch example Suppose C sends frame to I, I responds to C A B S1S1 C D E F S2S2 S4S4 S3S3 H I G MAC addr interface TTL S1S1 C I MAC addr interface TTL S4S4 C 1 60 I 2 MAC addr interface TTL S3S3 C 2 60 I 1 r A:

5: DataLink Layer5-12 An institutional Layer 2 network to external network router IP subnet mail server web server r Pros:  Self-leaning Switch is easy to maintain the network (switch is plug-&-play device).  Throughput will increase (why? Layer 2 processing). r Cons:  Large L2 network can be overwhelmed by ARP broadcast.  Complex switch network does not provide efficient routing.

5: DataLink Layer5-13 Switches vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, self-learning algorithms Switch