CERN LEIR Low Level RF Maria Elena Angoletta AB/RF CERN, Geneva on behalf of the LEIR LLRF team Invited Talk 55 LLRF05: Workshop on Low Level RF CERN,

Slides:



Advertisements
Similar presentations
Digital RF Stabilization System Based on MicroTCA Technology - Libera LLRF Robert Černe May 2010, RT10, Lisboa
Advertisements

26-Sep-11 1 New xTCA Developments at SLAC CERN xTCA for Physics Interest Group Sept 26, 2011 Ray Larsen SLAC National Accelerator Laboratory New xTCA Developments.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
A. Blas 09 Jan 2009 DSP BC Daughter cards1/21 DSP beam control Overview LEIR BC From M.E. Angoletta.
Front-end amplifiers for the beam phase loops in the CERN PS Alessandro Meoli (CERN BE/RF/FB) Supervised by Heiko Damerau 21 April CERN.
Strategy for SPS 200 MHz LLRF upgrade (1)  Each of the four cavities (2x 5 sections, 2x 4 sections):  1-T Feedback (loop around cavity and amplifier)
3/7/05A. Semenov Batch-by-Batch Intensity Monitor 1 Two-Channel Batch by Batch Intensity Monitor for Main Injector BBI.
06/05/2004AB/CO TC RF controls issues Brief overview & status Requested from AB/CO Hardware, Timing, VME/FESA for LEIR, SPS, LHC Controls for LHC RF Power.
22/03/1999A.Blas1 Hollow bunches A. Blas, S. Hancock, S. Koscielniak, M. Lindroos, F. Pedersen, H. Schonauer  Why: to improve space charge related problems.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
Booster Cogging Upgrades Craig Drennan, Kiyomi Seiya, Alex Waller.
Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators Silvia Zorzetti.
Status of the Beam Phase and Intensity Monitor for LHCb Richard Jacobsson Zbigniew Guzik Federico Alessio TFC Team: Motivation Aims Overview of the board.
Jan 30, 2008MAC meeting1 Linac4 Low Level RF P. Baudrenghien with help from J. Molendijk CERN AB-RF.
S. De Santis “Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing” - BIW 2004 May, 5th Measurement of the Beam Longitudinal.
Figure 2 gives an overview of the hardware components of the upgraded Main Injector BPM system. The figure shows 2 signal channels which produce one position.
BI day 2011 T Bogey CERN BE/BI. Overview to the TTpos system Proposed technical solution Performance of the system Lab test Beam test Planning for 2012.
AB-RF-FB LLRF Developments at CERN Historic Overview, Highlights, Future Challenges Flemming Pedersen.
Summary of CERN/GSI Meeting on RF Manipulations and LLRF in Hadron Synchrotrons, March
Cavities Auto Recovery with Beam RF&Linac Section - ALBA Accelerators Division Francis Perez Angela Salom.
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser 1 Frank Ludwig, DESY XFEL-LLRF-ATCA Meeting, 3-4 December 2007 Downconverter Cavity Field.
The ISIS Dual Harmonic Upgrade The Council for the Central Laboratory of the Research Councils Andy Seville Joint Accelerator WorkshopMarch 28th, 2006.
New PSB Beam Control Upgrade of daughter cards Alfred Blas PSB rf Working group meeting 24/03/ Generation of REV clocks 2.Synchronization with.
Present Uses of the Fermilab Digital Signal Receiver VXI Module Brian Chase,Paul Joireman, Philip Varghese RF Embedded Systems (LLRF) Group.
A.Blas APC meeting 12/5/ Status of the PS TFB Project triggered by: K. Schindl and R. Cappi Hardware: J. Belleman (PU amplifiers) T. Bohl, W. Hofle,
14 th ESLS RF Meeting – Trieste, September 2010 ALBA RF Status 1/28 ALBA RF Status Francis Perez.
PSB Finemet upgrade: overview, preliminary results & planning LLRF: M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J. Sanchez Quesada (RF/FB, RF/CS)
Feedback and Beam Control Section (FB) Activities and Highlights 2013 Outlook presented by Wolfgang Hofle FB Section at 2013 RF Group Meeting - December.
L. Ventura, H. Damerau, G. Sterbini MSWG MEETING, June 19 th 2015 Acknowledgements: S. Gilardoni, M. Haase, M. Migliorati, M. Paoluzzi, D. Perrelet. 1.
R.SREEDHARAN  SOLEIL main parameters  Booster and storage ring low level RF system  New digital Booster LLRF system under development  Digital LLRF.
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
RF system & magnetic PU ELENA review meeting CERN, November 2015 M.E. Angoletta, S. Hancock, M. Haase, M. Jaussi, A. Jones, J. Molendijk, M. Paoluzzi,
Bunch Numbering P. Baudrenghien AB/RF for the LHC/RF team.
B. Todd et al. 19 th August 2009 The Beam Interlock System Thanks to: Machine Protection Panel, R. Schmidt, B. Puccio, M. Zerlauth and many more… 0v2.
SPS 200 MHz LLRF upgrade Part 2: Implementation Philippe Baudrenghien, Grégoire Hagmann,
Digital LLRF: ALBA and Max-IV cases RF&Linac Section - ALBA Accelerators Division Angela Salom.
LS1 Mid-Point Status Report of the PSB Low Level RF, Transverse Feedback & High Level RF. Autumn 2013 A. Akroh, M.E. Angoletta, A. Blas, L. Arnaudon, A.
© 2001 By Default! A Free sample background from Slide 1 Controls for LEIR AB/CO Technical Committee - 18 th March 2004.
4 Channel DAC (Petri): 3 boards available for testing (version 1)-> now Transition board-> 22/12/2010 End of Hardware tests-> 28/01/2011 Attached DDC firmware.
Radio-Frequency (RF) & Schottky diagnostics WP for ELENA Maria Elena Angoletta, BE/RF on behalf of the CERN RF group First ELENA construction meeting CERN,
Digital LLRF: achievements and LS1 plans M. E. Angoletta, A. Blas, A. Butterworth, A. Findlay, M. Jaussi, P. Leinonen, T. Levens, J. Molendijk, J. Sanchez.
Tevatron Beam Position Monitor Upgrade Stephen Wolbers (for the Tevatron BPM Upgrade Project) PAC05, Knoxville, TN May 16-20, 2005.
FPGA Mezzanine Card standard IO-modules for the LLRF beam control system of CERN’s PS Booster and MedAustron synchrotron M. E. Angoletta, A. Blas, A.
Experience with the commissioning and operation of the new CERN Digital LLRF family M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J. Sanchez Quesada,
DLLRF: existing & possible applications M. E. Angoletta, M. Jaussi, J. Molendijk, J. Sanchez-Quesada CERN, BE/RF Finemet ® Review, September 2015.
Digital Receiver and Modulator Architecture for Multi-harmonic RF Finemet Operation 03/11/2015 LLRF15: Digital Receiver and Modulator Architecture for.
BE-RF-FB THE LINAC4 LOW LEVEL RF 02/11/2015 LLRF15, THE LINAC4 LOW LEVEL RF2 P. Baudrenghien, J. Galindo, G. Hagmann, J. Noirjean, D. Stellfeld, D.Valuch.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
LIU Day 2014 – M.Bodendorfer - LEIR model. LEIR model A plan for understanding/upgrading the LEIR performance limitations M.Bodendorfer BE/ABP & LEIR.
RF acceleration and transverse damper systems
Challenges of Dual Harmonic RF Systems
The ISIS Dual Harmonic Upgrade
CERN’s PS Complex LLRF consolidation:
Lead performance throughout the injector chain with focus on LEIR
L4-PSB working group meeting 25/06/2009
LLRF'15 Workshop, Shanghai, Nov. 4, 2015
Considerations on RF systems of SPPC collider and its injector chain
ELENA Overview and Layout Start of ELENA Commissioning Next Steps
The ELENA BPM System. Status and Plans.
PSB rf manipulations PSB cavities
RF and Sequences Andy Butterworth BE/RF
LLRF: M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J
Low-level RF consolidation of the CERN PS Complex machines
New PSB beam control rf clock distribution
LEIR Presented by M. CHANEL PSDAYS: EVIAN 2001.
PSB – Linac 4 Interfacing
Maria ELENA Angoletta for the RF team
Cooling of C6+ ion beam with pulsed electron beam
JLEIC Ion Beam Formation options for 200 GeV
Presentation transcript:

CERN LEIR Low Level RF Maria Elena Angoletta AB/RF CERN, Geneva on behalf of the LEIR LLRF team Invited Talk 55 LLRF05: Workshop on Low Level RF CERN, October 2005

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 2 / 18Outline 1.LEIR & I-LHC, LLRF requirements. 2.LEIR LLRF system: overview, layout & roadmap. 3.PSB beam control test results. 4.Conclusions & acknowledgments.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 3 / 18 LEIR & I-LHC [1]  LHC to collide heavy ions from Pb 82+ first, lighter ions later. Figure 1: ions for LHC – bold yellow line (Linac3-LEIR- PS-TT2-TT10-SPS-LHC). [1]S. Maury et al.,”Ions for LHC: Beam Physics and Engineering Challenges”, PAC05, Knoxville, USA, May  Injectors upgrade → Ions for LHC (I-LHC) project.  LEI LEIR EAR  Low Energy Ion Ring (LEIR): key-element, upgraded from Low Energy Antiproton Ring (LEAR).

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 4 / 18 Figure 2: Nominal LEIR cycle for Pb 54+. Coasting beamBunched beam Lighter ions after ~2011: In 37+, Kr 29+, Ar 16+, O 8+ LEIR [2] Table 1: LEIR params. for Pb nominal cycle. Multiturn injection Electron cooling Acceleration Extraction Pb 54+ intensity (EXT)9 ·10 8 Harmonic number h2 f REV, INJ [kHz]361.3 f REV, EXT [kHz]1423 f S, AFTER_BUNCHING [Hz]600 f S,EXT [Hz]2000 T INJ [MeV/u]4.2 T EXT [MeV/u]72.2 Repetition period[s]3.6 [2]M. Chanel, “LEIR, the Low Energy Ion Ring at CERN”, EPAC02, Paris, France, June (ion) pulses ~200 μs, low-intensity bunches ~200 ns, high-density Conversion to by accumulation & cooling.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 5 / 18 LLRF requirements  Pulse-to-ulse Modulation sequencing  Pulse-to-Pulse Modulation sequencing  Nominal operation: h = 2  Early operation: h = 1 → f RF, MIN = 0.36 MHz.  Wide f REV range  f RF in [0.7 – 2.8 MHz] for Pb 54+.  f RF in [0.7 – 5 MHz] for lighter ions. magnetic alloy-based (Finemet®), wide-band, non-tunable cavity [3]. [3]M Paoluzzi, “The LEIR RF System”, PAC05, Knoxville, USA, May Figure 3: LEIR cycle is composed of several users during commissioning. Figure 4: LEIR cavity impedance Z  High cavity Z for cooled beam  Cavity servoloop tuned on h & 2h.  Real-time control of gap relay to short-circuit cavity.  High cavity voltage dynamic range  High cavity voltage dynamic range (~60 dB)  Dual harmonic operation on a single cavity  Dual harmonic operation on a single cavity (h, 2h)

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 6 / 18Outline 1.LEIR & I-LHC, LLRF requirements. 2.LEIR LLRF system: overview, layout & roadmap. 3.PSB beam control test results. 4.Conclusions & acknowledgments.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 7 / 18  Started fall 2003 as CERN-BNL collaboration (now mainly CERN effort). →  All-digital beam control & cavity servoloop: a → new skills required. →  Addresses all RF requirements ( → slide 5 ). LEIR LLRF [4] overview [4] LEIR LLRF website Beam control capabilities  frequency program,  radial + phase + synchro loops,  I/Q servo-loop for cavity voltage phase/amplitude,  radial steering, frequency offset …  beam phase ~ 20 kHz,  cavity servo ~ 20 kHz,  radial ~ 1 kHz. Expected loops BW  Modular design (h/w + s/w).

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 8 / 18 Hardware DDCSDDSMDDS Hardware: DSP-carrier board + daughtercards (DDC, SDDS, MDDS). Other modules (rear transition, clock fanout …) not listed here. LEIR LLRF overview – cont’d  DSP-carrier  DSP-carrier:  Function: beam ctrl, carries daughtercards, s/w int’face, diagnostics...  6U VME64x, ADSP21160M DSP, 8 MB memory, FPGAs (glue-logic & light processing).  Inter-DSP data exchange via linkports™.  Master Direct Digital Synthesiser  Master Direct Digital Synthesiser: [5]  Function: tagged clock [5] (single/double) generation.  AD GHz DDS + Stratix. LVDS + Firewire connector & cables. Figure 6: Tagged clock – schematic view. [5] R. Garoby, “Multi-Harmonic RF Source for the Anti-Proton Production Beam of the AD”, PS/RF/Note Figure 5: MDDS daughtercard – schematic view.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 9 / 18 LEIR LLRF overview – cont’d Figure 7: DDC daughtercard – schematic view.  Function: tunable RF receiver. CIC filter under DSP control.  ADC (AD9245, 14 bits, 80 MHz) + Stratix. SRAM (256 k x 16 bits).  Diagnostics info to DSP.  Digital Down Converter (4 channels)  Digital Down Converter (4 channels):  Digital I/O for cavity interfacing.  Slave Direct Digital Synthesiser(4 channels)  Slave Direct Digital Synthesiser (4 channels):  Function: analogue voltages generation (cavity voltages + RF trains).  DAC (AD9754, 14 bits, 125 MHz) + Stratix. SRAM (256 k x 16 bits).  Switched DAC I ref for high output dynamic range. Figure 8: SDDS daughtercard – schematic view.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 10 / 18 LEIR LLRF overview – cont’d  Data retrieval for system diagnostics & monitoring. Aim: system fully configurable/monitored from control room.  Reference function & timing events generation. Software DSPsFPGAs Software : floating point DSPs + FPGAs.  Use of DSP SIMD capabilities (ex: phase rotation)  H/w blocks mapped to s/w blocks (from DSP to application). RF-specific application program  Synoptic for easy understanding.  MATLAB available for offline data analysis. Figure 9: RF-specific application. Radial loop window. Complex (I & Q) data FPGA processing 4 radial loop corrector setups Reference function

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 11 / 18Layout Figure 10: LEIR LLRF schematic view. DSP A Frequency program, radial loop & RF trains gen. DSP B Phase & synchro loops DSP C Vector sum calculation & cavity servoing B up B down Tagged clock TPU 1 & 2 1 & 2RFtrains PhasePURFref Cavity 1 & 2, h RF & 2h RF Digital I/O Gap relay ctrl, beam status Linkport40 MHz ref Middleware MATLAB

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 12 / 18Roadmap Export technology to CPS accelerators (PSB, AD, PS). Advantages: standardisation & easier maintenance. System important “per se” & as pilot project. Digital beam control system suited for low-frequency synchrotrons with high frequency swing Digital beam control system suited for low-frequency synchrotrons with high frequency swing.  LEIR acceleration + digital LLRF commissioning Feb ’06.  PSB testing system prototype beam control test results. (the beam never lies…)

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 13 / 18Outline 1.LEIR & I-LHC, LLRF requirements. 2.LEIR LLRF system: overview, layout & roadmap. 3.PSB beam control test results. 4.Conclusions & acknowledgments.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 14 / 18 Capture & acceleration efficiency Results Table 3: Efficiency results PSB test results  Scaled-down prototype system tested in PSB (2004 [6] & 2005).  PSB: f REV & f S range similar to LEIR. [6]M. E. Angoletta et al., “Beam Tests of a New Digital Beam Control System for the CERN LEIR Accelerator”, PAC05, Knoxville, USA, May p% Injection7.66 Capture Acceleration ParameterUnitLEIRPSB INJ. f REV MHz fSfS kHz TMeV/u EXT. f REV MHz fSfS kHz TMeV/u Cycle times Accel. times~10.5 Table 2: LEIR and PSB parameters comparison.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 15 / 18 PSB test results – cont’d  rad. steering: 468 & 612 ms.  set rise time T r ~ 2ms.  optimised PI: 468 & 612 ms. Figure 11: Phase loop response to step, zoomed onto fast & slow step response. Result Result: slow & fast time constants as expected. Phase loop dynamics Radial loop dynamics Figure 12: Radial loop response to radial steering. Test  set f PL = 7 kHz, 570 Hz.  add 0.2 rad (step) to φm.  observe φ m. Test Result Result: measured T r as expected.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 16 / 18Outline 1.LEIR & I-LHC, LLRF requirements. 2.LEIR LLRF system: overview, layout & roadmap. 3.PSB beam control test results. 4.Conclusions & acknowledgments.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 17 / 18Conclusions  LEIR LLRF: digital system suited for low-frequency machines with high frequency swing.  A – change of culture + new skills.  Soon to be commissioned in LEIR.  Beam control capabilities tested in PSB with good results.  Fully configurable/monitored from control room.  DSPing/control by DSPs + FPGAs.  Long-term plan: export technology to CPS accelerators. Aim: standardisation & maintainability.

M.E. Angoletta - LLRF05 workshop CERN LEIR Low Level RF 18 / 18Acknowledgments Joe DeLong Many thanks to Joe DeLong (BNL) for initial board development current CERN LEIR LLRF team & to the current CERN LEIR LLRF team:  J. C. Allica Santa Maria (technical student),  M. E. Angoletta (project leader),  J. Bento,  A. Blas,  E. Bracke,  A. Butterworth,  A. Findlay,  P. Matuszkiewicz (fellow),  F. Pedersen,  T. Rohlev.