1 A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L.

Slides:



Advertisements
Similar presentations
The GMT NGS WFS design Presented by S. Esposito. The team L. Fini G. Agapito L. Carbonaro A. Puglisi L. Busoni V. Biliotti A. Riccardi S. Esposito E.
Advertisements

W Unit Opto-Mechanical Acceptance Test Specifications A.Tozzi, E.Pinna, S.Esposito FLAO system external review, Florence, 30/31 March 2009 FLAO_03 (CAN:
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L. Fini,
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
The adaptive secondary mirror. Current technology for MMT/LBT A. Riccardi 1, G. Brusa 1, C. Del Vecchio 1, P. Salinari 1, R. Biasi 2, M. Andrighettoni.
Wavefront Correction SystemWavefront Correction System Hardware and Software.
CHARA AO WFS Design JDM (+LS,MJI) 2012Sep06 v0.1 1.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
GMT Phasing GLAO – not needed LTAO – Phase stabilization done at ~1kHz with edge sensing at M1 and M2 – Phase reference set at ~.01Hz using off-axis star.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
A Short Introduction to Adaptive Optics Presentation for NGAO Controls Team Erik Johansson August 28, 2008.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
NGAO NGS WFS design review Caltech Optical Observatories 31 st March 2010.
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
NGAO NGS WFS design review Caltech Optical Observatories 1 st April NGAO WFS design, Caltech Optical Observatories.
Keck Laser Guide Star Adaptive Optics System: 1 st & 2 nd Milestones AOWG Telecon Oct. 17, 2003 A. Bouchez, J. Chin, A. Contos, S. Hartman, E. Johansson,
NGAO NGS WFS design review Caltech Optical Observatories 1 st April NGAO WFS design, Caltech Optical Observatories.
A Pyramid WFS For LBT AGW Unit S. Esposito, A. Riccardi, D. Ferruzzi, A. Tozzi, M. Accardo, M. Carbillet, C. Verinaud, L. Fini, A. Puglisi, P. Salinari.
Integration and Alignment of Optical Subsystem Roy W. Esplin Dave McLain.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Keck AO the inside story D. Le Mignant for the Keck AO team.
8 September Observational Astronomy TELESCOPES, Active and adaptive optics Kitchin pp
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
15 October Observational Astronomy Direct imaging Photometry Kitchin pp ,
1 Palomar Tomograph V. Velur 1, B. Platt 2, M. Britton 1, R. Dekany 1 1 Caltech Optical Observatories, California Institute of Technology 2 Interferometry.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
Tucson, SW workshop Oct 2006 FLAO WFS software Alfio Puglisi, Fabio Tosetti Osservatorio Astrofisico di Arcetri, Florence, Italy.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
1 1 st Light AO 4 LBT Pyramid WFS Adaptive Secondary MMT Unit.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
LBT SW workshop. Tucson, 2-6 Oct 2006 A. Riccardi - The LBT AdsSec units1 The two LBT adaptive secondary units (LBT672a, LBT672b) A. Riccardi, M. Xompero,
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
AO188/LGS Status and Schedule 1 Yutaka Hayano January 31, 2008.
Status report of AO188+LGS (+future AO) Yutaka Hayano (Subaru Telescope, NAOJ) S. Oya, M. Hattori, Y. Saito, Y. Minowa, M. Ito, H. Terada, T.S. Pyo, H.
The Active Optics System S. Thomas and the AO team.
FLAO_01: FLAO system baseline & goal performance F. Quirós-Pacheco, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Pre-focal wave front correction and field stabilization for the E-ELT
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Synopsis of the pyramidal surface parametrization. Figure Legend: From: Modeling.
Lecture 14 AO System Optimization
Pyramid sensors for AO and co-phasing
Intra-pixel Sensitivity Testing Preliminary Design Review
NGS AO Control Light from Telescope Telescope pointing offload
Observational Astronomy
Optics Alan Title, HMI-LMSAL Lead,
Presentation transcript:

1 A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L. Fini, I. Foppiani, A. Puglisi, P. Stefanini, R. Ragazzoni, P. Ranfagni, A. Riccardi, A. Tozzi, C. Verinaud, R. Biasi D. Gallieni, W. Seifert, J.Storm Presented by: S. Esposito Tucson, December 9 th 2001

2 The DM, Adaptive Secondary (LBT672) AO system for LBT AGW: Summary AO System Integration and Testing AO System Objectives Real-Time loop control The WFS unit, pyramid sensor Time schedule, costs and manpower

3 System main Objectives Very high correction with bright reference sources High number of actuators 672 High pupil sampling 32x32 (CCD39), 60x60 (CCD60) Maximized Sky Coverage High sensitivity of Pyramid Sensor High transmittance of the WFS optics no RON with CCD60

4 LBT AO System: DM MMT Adaptive Secondary Adaptive secondary for LBT 672 actuators Tip-tilt and HO correction Wavefront reconstructor on-board 911mm

5 A Moveable WFS for the AGW unit 20 th October 2001 Reduce size, number and cost of optical elements High optical throughput Minimize NCP aberrations Reduce system flexure Reduce turbulence WFS optical path Easy assembly and testing the WFS unit Same HO & TT reference star

6 LBT AO System: WFSs LGS (Sodium) WFS HO small 120x100x100 mm, 200mm refocuseable unit NGS WFS HO&TT small 300x400mm,moveable unit acquiring +/- 60 arcsec FOV F 15 beam from LBT Instrument entrance window 15 o derotator unit Instrument flange

7 A Moveable NGS WFS for the AGW F 15 beam from LBT Instrument entrance window 15 o derotator unit NGS WFS HO&TT small 300x400mm moveable unit +/- 60 arcsec FOV

8 Board misalignment Linear stages flexures: 15  m traslation, 15 arcsec tilt Board translation Board tilt Spot displacements on Pyramid vertex: 0.1 mm, 0.05mas Spot displacements on Pyramid vertex: 0.4mas/deg, J band FWHM 30mas Pupil displacements onWFS CCD 0.5  m/20 deg (24  m/pixel)

9 Pyramid Optical set-up I Optical set-up

10 The Pyramid Operating Principle Pupil plane x y DETECTOR Glass Pyramid Telescope pupil Pupil re- imager Image plane PSF pixels used for slope computation at the correspondin pupil subarea

11 A Moveable WFS for the AGW Unit II HO beamTT beam Field Viewer beam CCD 39/60 Field viewer PI Strap unit Incoming f15 beam from LBT focal plane Telecentric lens ADC optics Filter wheel Piezo steering mirror pyramids Board dimension 400x320 mm including detectors 100x100x100 CCD head 80x100x100 STRAP unit

12 Another view Folding mirrors Filter wheels CCD39 Field viewer Strap unit PI

13 NGS High Order Channel (EEV39) Pupils on CCD 60 (128x128) Camera doublet f = 67 mm Focal plane to pupil plane distance 135mm Pupil diameter: 1440  m (60 pixels) NOT TO SCALE

14 NGS HO PSF: Board On-AxisI board on axis, Strehl ratio at the focal plane (f/45) vs. FOV ZENIT angle (°)

15 NGS HO PSF: Board Off-Axis Board 1 arcmin off axis, Strehl ratio at the focal plane (f/45) Vs. FOV ZENIT angle (°) LBT only (f 15 ) LBT + board (f 45 )

16 The NGS HO Pyramid design I Vertex  30°, SK10 Vertex  28.2°, SSK2 FOV +/- 1 arcsec Energy loss on edges < 10 % Chromatism  m at 0-69 deg wl range (0.6 – 1.0  m) 

17 NGS Tip-Tilt Channel NOT TO SCALE

18 NGS Tip-Tilt beam II Strap Unit 2.55mm 123  m 2 arcsec / 3.6 mm APD sensitive area 200  m APD separation adjustable around 2.8 mm Pyramid angle 30 deg (SSK2) Chromatism about 30  m

19 NGS Field Viewer beam CCD65 camera 3L CCD 65 Sensible area 11.5x8.6 mm FOV 6.4x4.8 arcsec Pixel size 20x30  m R band not well sampled NOT TO SCALE

20 LGS High Order Channel Telecentric lens for NGS board Sodium beacon NOT TO SCALE 764  m, (32 pixel)

21 LGS High Order Channel 764  m 1800  m LBT NGS focal plane LBT LGS Focal plane Single pyramid (Silica) Pyramid angle 7 deg No edge problems 58mm 15.9mm12.8mm

22 NGS HO Channel throughput ADCC04-64 BAM mm TripletFK51 KZFSN5 F mm Beam splitter BK70.7 mm11 Telecentr ic lens F_Silica5 mm11 Doublet camera C04-64 BAM mm 3.2 mm PyramidSK10 SSK mm 5.55 mm Total transmission0.98 Coating (812 nm Balzer Supertriolin 0.7%) ADC4 surfaces glass- air Triplet2 surfaces glass- air Beam splitter 2 surfaces glass-air Telecentr ic lens 2 surfaces glass- air Doublet camera 2 surfaces glass- air Pyramid2 surfaces glass- air Balzer Silflex-VIS Mirror Mirror Total NGS HO transmission0.846 Internal Glass Trasmission Air/Glass trasmission Pyramid Edge losses 10 % TOTAL TRASMISSION 0.83 * 0.9 = 75 %

23 WFSs on-board Opto-mechanics HO CCD FW CCD STRAP PI Folding mirrors Filter wheels FW1 tilt: +/- 9’ => +/- 2mm PSF disp. hole: focus disp. 1mm hole: beam traslation (20deg) => 1mm pupil disp. (1/8 relative disp.) PI mirror, as FW1 HO FM tilt: +/- 1deg => +/- 1 mm PSF disp. tilt: 1’ => pupil disp. of 8.7  m TT FM tilt: +/- 1deg => < 2 mm PSF disp. tilt: 1’ => pupil disp. of 7  m hole: beam traslation, (20deg) => 1mm pupil disp. (1/8 relative disp.) FW2 hole: beam translation (10deg) => 0.5mm pupil disp. (1/20 relative disp.) FW1 FW2 HO TT

24 Board positioning for guide star acquisition Board focusing Ref. Source acquisition Sodium laser channel And WFS

25 LBT AO System: RT operation & HW CCD 96 PIO STRAP UNIT APDs' TIP-TILT SENSOR RS 232 M2 crates Slope computer High speed fiber link Controller CCD39/50/60 64x64x16bit 1ms 1Kframe/s (65Mbit/s) 16op/sensing subap. 32x32 subaperture 50  s comp. time DSP op. rate 320 Mflops/s 32x32x2x32bit 27  s trasm. time 2.4 Gbit/s fiber link Reconstruction: (32x32x2)x672x2op: 27  s WF rec. 107 Gflop/s (336DSP) TCS Diag. comp

26 First light and MMT test LBT 1 st lightMMT testHW CCD controller and SLC intf. 65 Mb/s16 Mb/s Four 16bit parallel port SLC32 Mflops/s8 Mflops/s 300 Mflops/s per BCCU SLC intf. To LBT Mb/s11 Mb/s2.4Gb/s WFC5 Gflops/s 230 Mflops/s 2.0 ms int. 300 Mflops/s x 336 DSP, 107Gflops/s LBT 1 st light: 32x32 sub. (16bit/pixel) 1Kframe/s (CCD60) 32x32x2 slopes (32bit/slope) 2048x672 REC MATRIX MMT test: 16x16 sub. (16bit/pixel) 500frames/s (CCD39) 16x16x2 slopes (32bit/slope) 512x336 REC MATRIX

27 LBT AO System: test facility I 15m Optical bench bolted to the tube LBT672

28 LBT AO System: test facility II M2 Test Interferometer focus F1 Reflecting optics Test beam Test interferometer “Instrument” 15 o tilted entrance window WFS unit

29 LBT AO System: schedule

30 First Light AO Preliminary cost estimate AO WFS Design Prototyping Lab Test P45 Test MMT Test? Full Sys test Installation LBT 672 Test Tower P36’ test P45 test LBT 672 constr. LBT 672 test Full Sys test Installation First Light AO requires work on various sub programs: LLLCCD Det. Proc. “Fasti” test LLL Controller Prototype LLL Controller AO Software Basic loop SW Housekeeping Diagnostics Self-optimization User interface TCS interface Installation

31 AO System Manpower

32 L3 CCD Manpower

33 WFS Hardware cost: first unit

34 Cost Summary Wavefront Sensor + SW First Unit 362 k$ Second unit185 k$ TotalWFS547 k$ Adaptive secondary136 K$ Not charged to LBTC: LLLCCD DEV270k$ Test Tower185k$ Total455k$ 683 k$ LBTC cost 455 k$ Arcetri/Bologna cost

35 Work in progress…… Optical design optimization & tolerances  echanical tolerances System performance simulations other Rerotator, optical vs. software