J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.

Slides:



Advertisements
Similar presentations
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Advertisements

Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Paul Emma LCLS Commissioning Status Nov. 11, 2008 SLAC National Accelerator Laboratory 1 LCLS Commissioning Status P. Emma for The.
New 135-MeV injector energy requires minor changes to linac operating point…
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
M. Venturini, Sept. 26, 2013, SLAC 1 ─ M. Venturini, Sept. 26, 2013, SLAC Marco Venturini LBNL Sept. 26, 2013 THE LATE NGLS: OVERVIEW OF LINAC DESIGN,
Longitudinal Space Charge in LCLS S2E Z. Huang, M. Borland, P. Emma, J.H. Wu SLAC and Argonne Berlin S2E Workshop 8/21/2003.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
LCLS-II Magnet Error Sensitivities. Sensitivities of dipole magnets, from injector output (95 MeV) to SXR undulator input (4 GeV), where each plotted.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Collective Effects in the Driver of the Wisconsin Free-Electron Laser (WiFEL) Robert Bosch, Kevin Kleman and the WiFEL team Synchrotron Radiation Center.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
J. Wu March 06, 2012 ICFA-FLS 2012 Workshop Jefferson Lab, Newport News, VA Tolerances for Seeded Free Electron Lasers FEL and Beam Phys. Dept. (ARD/SLAC),
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Beam Optics of the TTF2 Nina Golubeva DESY. Beam optics from the BC2 up to the undulators General introduction to linear optics: – constraints for different.
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
X-band Based FEL proposal
LCLS-II will use sectors (2 nd kilometer of SLAC linac) + a bypass line FACET has already removed all RF from sector 20 LCLS-II will re-install RF.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Robert Bosch, Kevin Kleman and the WiFEL team
Cutting Beam Horns in BC1
Short pulse, low charge LCLS operation
Review of Application to SASE-FELs
CSR Benchmark Test-Case Results
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
Time-Resolved Images of Coherent Synchrotron Radiation Effects
LCLS Longitudinal Feedback and Stability Requirements
G. Marcus, Y. Ding, J. Qiang 02/06/2017
Simulation Calculations
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Linac/BC1 Commissioning P
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Operational Experience with LCLS RF systems
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Electron Optics & Bunch Compression
Presentation transcript:

J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J. Wu, SLAC

OUTLINE Continue from the talk I gave on April 11, 2012 undulator by-pass line Updated to LCLS-II design distance and also modeled the undulator resistive-wall wakefield effect and by-pass line wakefield effect Pros of setting 300 ~ 350 MeV for LCLS-II More accelerator tubes before BC1: lower the amplitude, avoid any breakdown related problem; more stable simply due to 1/sqrt(2) statistics; … One concern about the chicane strength (looked into) More knowledge about the stability and tolerance (on-going) LCLS-II Accel. Phys., J. Wu, SLAC

LAYOUT: ACCORDING TO LCLS-II MAD DECK 250 MeV Set points BC1: R 56 = 46 mm, Energy 250 MeV, peak current 176 Amp L1S: – 20 degree L1X: – 160 degree; 19 MeV L2: – 31.4 degree BC2: R 56 = 29 mm, Energy 4.5 GeV, peak current 3 kA BC2 4.5 GeV By-pass 13.5 GeV TCAV3BC1 250 MeV L1S wirescanner L1X 4 wire-scanners L2-linac L3-linac DL1 135 MeV L0 gun LCLS-II Accel. Phys., J. Wu, SLAC UND

PROFILES BC1ENDUNDBEG CSR, LSC included in LiTrack, good agreement with Elegant [Bosch, Kleman, Wu, PRSTAB, 2008] LCLS-II Accel. Phys., J. Wu, SLAC

BC2 CSR AND L3 RF + WAKE BC2ENDL3END CSR, LSC included in LiTrack, good agreement with Elegant [Bosch, Kleman, Wu, PRSTAB, 2008] LCLS-II Accel. Phys., J. Wu, SLAC

BY-PASS LINE AND UNDULATOR WAKE Implement wakefield UNDENDUNDBEG LCLS-II Accel. Phys., J. Wu, SLAC

LAYOUT: HIGHER ENERGY 335 MeV Set points BC1: R 56 = 44.4 mm, Energy 335 MeV, peak current 207 Amp L1S: – 16 degree L1X: – 160 degree; 30 MeV L2: – 32 degree BC2: R 56 = 27 mm, Energy 4.5 GeV, peak current 3 kA LCLS-II Accel. Phys., J. Wu, SLAC BC2 4.5 GeV By-pass 13.5 GeV TCAV3BC1 355 MeV L1S wirescanner L1X 4 wire-scanners L2-linac L3-linac DL1 135 MeV L0 gun UND

PROFILES BC1ENDUNDBEG CSR, LSC included in LiTrack, good agreement with Elegant [Bosch, Kleman, Wu, PRSTAB, 2008] LCLS-II Accel. Phys., J. Wu, SLAC

BC2 CSR AND L3 RF + WAKE BC2ENDL3END CSR, LSC included in LiTrack, good agreement with Elegant [Bosch, Kleman, Wu, PRSTAB, 2008] LCLS-II Accel. Phys., J. Wu, SLAC

BY-PASS LINE AND UNDULATOR WAKE Implement wakefield UNDENDUNDBEG LCLS-II Accel. Phys., J. Wu, SLAC

REMATCH THE OPTICS Twiss-function through 335 MeV

EMITTANCE GROWTH Due to ISR E = GeV;  = 6.43 o ; L B = ;  L = ; ; negligible  x = 5.5E-13  negligible last time CSR and Space Charge: reported last time with Impact- T simulation  small T.O. Raubenheimer LCLS-II Accel. Phys., J. Wu, SLAC

BC1 DIPOLE FIELD INTEGRAL BC1 energy set point to be as high as 350 MeV Assuming the set point range is from 200 MeV to 350 MeV Assuming the BC1 chicane can provide R 56 from 15 mm to 65 mm for the above mentioned energy range (200 – 350 MeV) With the same geometry as in CDR 1.31 kG m Then the maximum field integral of each dipole is 1.31 kG m (350 MeV and R 56 of 65 mm) Details are plotted in the next page LCLS-II Accel. Phys., J. Wu, SLAC

BC1 DIPOLE FIELD INTEGRAL BC1 energy set point: MeV redgreenblue BC1 chicane R 56 : 15 (red curve) – 46 (green curve) – 65 (blue curve) mm 1.31 kG m 1.10 kG m

SETPOINT Comparison between setting 250 and 335 MeV Next, look at the jitter and tolerance BC1 Setpoint (MeV) LocationR 56,1 (mm) L 1S Phase (S-deg) L 1X Phase (X-deg) L 1X Amplitud e (MV) L 2 Phase (S-deg) BC2 Setpoint (GeV) R 56,2 (mm) LCLS-II Accel. Phys., J. Wu, SLAC

L1S PHASE JITTER: UNDBEG CENTROID ENERGY 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1S PHASE JITTER: UNDBEG RESIDUAL ENERGY CHIRP 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1S PHASE JITTER: UNDBEG PEAK CURRENT 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X PHASE JITTER: UNDBEG CENTROID ENERGY 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X PHASE JITTER: UNDBEG RESIDUAL ENERGY CHIRP 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X PHASE JITTER: UNDBEG PEAK CURRENT 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X AMPLITUDE JITTER: UNDBEG CENTROID ENERGY 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X AMPLITUDE JITTER: UNDBEG RESIDUAL ENERGY CHIRP 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

L1X AMPLITUDE JITTER: UNDBEG PEAK CURRENT 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

INJECTOR TIMING JITTER: UNDBEG CENTROID ENERGY 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

INJECTOR TIMING JITTER: UNDBEG RESIDUAL ENERGY CHIRP 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

INJECTOR TIMING JITTER: UNDBEG PEAK CURRENT 335 MeV250 MeV LCLS-II Accel. Phys., J. Wu, SLAC

JITTER SENSITIVITIES AND TOLERANCE 250 MeV case from CDR

JITTER SENSITIVITIES AND TOLERANCE 335 MeV case on-going: L1S phase, L1X phase, timing Jitter sourceE BC1 (MeV)  E/E 0 (%) h 0 (1/m)  h (1/m)  I/I 0 (%) L 1S phase (rms 0.06 degree) L 1X phase (rms 0.50 degree) L 1X amplitude (rms 0.05 MeV) Injector timing (rms 200 fs) LCLS-II Accel. Phys., J. Wu, SLAC

L1X PHASE JITTER 335 MeV: UNDBEG L 1X : o L 1X : -160 o L 1X : o

Linear compression study with optimization for MeV up to undulator end Linear compression study with optimization for MeV up to undulator end Longitudinal profile up to undulator end Longitudinal profile up to undulator end Tolerance study: centroid energy, residual energy chirp, peak current on timing and LINAC phase jitter up to undulator entrance Tolerance study: centroid energy, residual energy chirp, peak current on timing and LINAC phase jitter up to undulator entrance Looked into BC1 dipole magnet design for 335 MeV Looked into BC1 dipole magnet design for 335 MeV 1.31 kG m o The maximum field integral of each dipole is 1.31 kG m (350 MeV and R 56 of 65 mm)  Full machine lattice in Impact code is on going  Strong focusing on sec  More tolerance study is needed. DISCUSSION LCLS-II Accel. Phys., J. Wu, SLAC