3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.

Slides:



Advertisements
Similar presentations
Technology Forecasting Learning Objectives
Advertisements

Agenda of Week V. Forecasting
Forecasting OPS 370.
Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management Forecasting Chapter 4
What is Forecasting? A forecast is an estimate of what is likely to happen in the future. Forecasts are concerned with determining what the future will.
Forecasting.
1 Lecture 2 Decision Theory Chapter 5S. 2  Certainty - Environment in which relevant parameters have known values  Risk - Environment in which certain.
CHAPTER 3 Forecasting.
Forecasting To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved.
Lecture 3 Forecasting CT – Chapter 3.
Chapter 3 Forecasting McGraw-Hill/Irwin
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Operations Management Forecasting Chapter 4
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
08/08/02SJSU Bus David Bentley1 Course Part 2 Supply and Demand Management.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting Car buyer- Models & Option Does the dealer know!
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Slides 13b: Time-Series Models; Measuring Forecast Error
Chapter 3 Forecasting McGraw-Hill/Irwin
The Importance of Forecasting in POM
Lecture 2: Time Series Forecasting
CHAPTER 3 FORECASTING.
Demand Management and Forecasting
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Forecasting.
Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Operations Management
3-1Forecasting CHAPTER 3 Forecasting Homework Problems: # 2,3,4,8(a),22,23,25,27 on pp
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
3-1 Forecasting I see that you will get an A this semester. 10 th ed.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
OM3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights.
BUAD306 Chapter 3 – Forecasting.
3-1Forecasting Ghana Institute of Management and Public Administration [GIMPA] McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson.
Adeyl Khan, Faculty, BBA, NSU Car buyer- Models & Option Does the dealer know! Basic Managerial function- Planning.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
Stevenson 3 Forecasting. 3-2 Learning Objectives  List the elements of a good forecast.  Outline the steps in the forecasting process.  Compare and.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Assignable variation Deviations with a specific cause or source. forecast bias or assignable variation or MSE? Click here for Hint.
Forecasting Production and Operations Management 3-1.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Demand Management and Forecasting Chapter 11 Portions Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Forecas ting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecast 2 Linear trend Forecast error Seasonal demand.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 11 – With Woodruff Modications Demand Management and Forecasting Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
3-1Forecasting Weighted Moving Average Formula w t = weight given to time period “t” occurrence (weights must add to one) The formula for the moving average.
Chapter 3 Lecture 4 Forecasting. Time Series is a sequence of measurements over time, usually obtained at equally spaced intervals – Daily – Monthly –
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Copyright © 2014 by McGraw-Hill Education (Asia). All rights reserved. 3 Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasts.
Operations Management Contemporary Concepts and Cases
RAJEEV GANDHI COLLEGE OF MANAGEMENT STUDIES
Stevenson 3 Forecasting.
Forecasting Elements of good forecast Accurate Timely Reliable
Presentation transcript:

3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.

3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and activities throughout an organization  Accounting, finance  Human resources  Marketing  MIS  Operations  Product / service design

3-3Forecasting AccountingCost and profit estimates FinanceCash flows and funding Human ResourcesTurnover, work vacancies MarketingConsumer demand, pricing MISIT/IS systems, services OperationsWorkloads, utilization schedules, Product/service designDemand for products and services Uses of Forecasts

3-4Forecasting  Assumes causal system past ==> future  Forecasts rarely perfect because of randomness  Forecasts more accurate for groups vs. individuals  Forecast accuracy decreases as time horizon increases I see that you will get an A this semester.

3-5Forecasting Steps in the Forecasting Process Step 1 Determine purpose of forecast Step 2 Establish a time horizon Step 3 Select a forecasting technique Step 4 Gather and analyze data Step 5 Prepare the forecast Step 6 Monitor the forecast “The forecast”

3-6Forecasting Types of Forecasts  Judgmental - uses subjective inputs  Time series - uses historical data assuming the future will be like the past  Associative models - uses explanatory variables to predict the future

3-7Forecasting Judgmental Forecasts  Executive opinions  Sales force opinions  Consumer surveys  Outside opinion  Delphi method  Opinions of managers and staff  Achieves a consensus forecast

3-8Forecasting Time Series Forecasts  Trend - long-term movement in data  Seasonality - short-term regular variations in data  Cycle – wavelike variations of more than one year’s duration  Irregular variations - caused by unusual circumstances  Random variations - caused by chance

3-9Forecasting Forecast Variations Trend Irregular variatio n Seasonal variations Figure 3.1 Cycles

3-10Forecasting Naive Forecasts Uh, give me a minute.... We sold 250 wheels last week.... Now, next week we should sell.... The forecast for any period equals the previous period’s actual value.

3-11Forecasting  Simple to use  Virtually no cost  Quick and easy to prepare  Data analysis is nonexistent  Easily understandable  Cannot provide high accuracy  Can be a standard for accuracy Naïve Forecasts

3-12Forecasting Techniques for Averaging  Moving average  Weighted moving average  Exponential smoothing

3-13Forecasting Moving Averages  Moving average – A technique that averages a number of recent actual values, updated as new values become available.  Weighted moving average – More recent values in a series are given more weight in computing the forecast. MA n = n AiAi i = 1  n

3-14Forecasting Simple Moving Average MA n = n AiAi i = 1  n Actual MA3 MA5

3-15Forecasting Exponential Smoothing Premise--The most recent observations might have the highest predictive value.  Therefore, we should give more weight to the more recent time periods when forecasting. F t = F t-1 +  ( A t-1 - F t-1 )

3-16Forecasting Exponential Smoothing  Weighted averaging method based on previous forecast plus a percentage of the forecast error  A-F is the error term,  is the % feedback F t = F t-1 +  ( A t-1 - F t-1 )

3-17Forecasting Example 3 - Exponential Smoothing

3-18Forecasting Picking a Smoothing Constant .1 .4 Actual

3-19Forecasting Common Nonlinear Trends Parabolic Exponential Growth Figure 3.5

3-20Forecasting Linear Trend Equation  F t = Forecast for period t  t = Specified number of time periods  a = Value of F t at t = 0  b = Slope of the line F t = a + bt t FtFt

3-21Forecasting Calculating a and b b = n(ty) - ty nt 2 - ( t) 2 a = y - bt n   

3-22Forecasting Linear Trend Equation Example

3-23Forecasting Linear Trend Calculation y = t a= (15) 5 = b= 5 (2499)- 15(812) 5(55)- 225 = =

3-24Forecasting Associative Forecasting  Predictor variables - used to predict values of variable interest  Regression - technique for fitting a line to a set of points  Least squares line - minimizes sum of squared deviations around the line

3-25Forecasting Linear Model Seems Reasonable A straight line is fitted to a set of sample points. Computed relationship

3-26Forecasting Forecast Accuracy  Error - difference between actual value and predicted value  Mean Absolute Deviation (MAD)  Average absolute error  Mean Squared Error (MSE)  Average of squared error  Mean Absolute Percent Error (MAPE)  Average absolute percent error

3-27Forecasting MAD, MSE, and MAPE MAD = Actualforecast   n MSE = Actualforecast )   n ( MAPE = Actualforecas t  n / Actual*100) 

3-28Forecasting Example 10

3-29Forecasting Controlling the Forecast  Control chart  A visual tool for monitoring forecast errors  Used to detect non-randomness in errors  Forecasting errors are in control if  All errors are within the control limits  No patterns, such as trends or cycles, are present

3-30Forecasting Sources of Forecast errors  Model may be inadequate  Irregular variations  Incorrect use of forecasting technique

3-31Forecasting Tracking Signal Tracking signal = ( Actual - forecast ) MAD  Tracking signal –Ratio of cumulative error to MAD Bias – Persistent tendency for forecasts to be Greater or less than actual values.

3-32Forecasting 3 Cautions about Forecasting  Forecasts usually assume that the same underlying causal system that existed in the past will continue to exist in the future.  Forecasts are not precise, so expect inaccuracies. Consider trends, seasonal, cyclical, irregular and random effects.  Forecast accuracy decreases as the time horizon increases.

3-33Forecasting Choosing a Forecasting Technique  No single technique works in every situation  Two most important factors  Cost  Accuracy  Other factors include the availability of:  Historical data  Computers  Time needed to gather and analyze the data  Forecast horizon