Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

Study on the Injection System for Compact Cyclotron Mass Spectrometry Do Gyun Kim, Joonyeon Kim, H. C. Bhang Department of Physics, Seoul National University.
1 ORISS Isomer and Isobar Spectrometer and Separator for Study of Exotic Decays A. Piechaczek for the.
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
Machine Physics at ISIS Proton Meeting 24 th March 11 Dean Adams (On behalf of ISIS Accelerator Groups)
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
Operational aspects 2008 run ISCOOL Isolde workshop Nov 2008 Erwin Siesling.
DESIR Progress Report DESIR hall details defined for civil construction: - compressed air, liquid nitrogen, cooling water, etc detailed layout of RFQ-HRS.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Update on Self Pinch Transport of Heavy Ion Beams for Chamber Transport D. V. Rose, D. R. Welch, Mission Research Corp. S. S. Yu, Lawrence Berkeley National.
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
HIS Ion Source Larry Lamm, Research Professor, Technical Director March, 2009 Nuclear Science Laboratory.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 106 nd Session, 24 September 2009, Dubna.
On-line tests RFQ cooler ISCOOL A quick summary P. Delahaye, H. Frånberg, I. Podadera ISCOOL, COLLAPS, ISOLDE collaboration.
Fragment Mass Analyzer Darek Seweryniak, ANL C. N. Davids et al., Nucl. Instrum. Meth., B 70, 358 (1992).
E. Beebe LEBT & Ion Injection EBIS Project Technical Review 1/27/2005 LEBT and External Ion Injection Ed Beebe Preinjector Group Collider-Accelerator Department.
Smoke Particle Velocity Measurements in Point to Plane Corona Discharges Noureddine ZOUZOU* Eric MOREAU Gérard TOUCHARD Laboratoire d’Etudes Aérodynamiques.
Carbon Injector for FFAG
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
AGFA – the Argonne Gas-Filled Analyzer Presentation at the 2014 ATLAS User’s Meeting May 15-16, 2014 Birger B. Back.
SUPERB Separator for Unique Products of Experiments with Radioactive Beams Matt Amthor Bucknell University ReA12 Recoil Separator Workshop – July 12, 2014.
1 CPOTS – 3 rd ERASMUS Intensive Program Introduction to Charged Particle Optics: Theory and Simulation
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
TITAN EBIT MCP Detector Assembly Cecilia Leung Undergrad summer student 2007 TRIUMF Summer Student Symposium Tuesday, July
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
MS Intro. MS requires gas-phase ions, why? MS uses magnetic and electric fields to control the path of a compound based on mass to charge ratio (m/z)
RFQ cooler and buncher project for ISOLDE Present status and off-line test results Hanna Frånberg, ISOLDE.
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
A mass-purification method for REX beams
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
TAS workshop 30-31/3/2004 Aspects of recoil-ion -  correlations in atomic traps A reminder why (V-A, ?S + ?T) Energy scales  basic setup  RIMS Precision.
Secondary Ion Mass Spectrometry A look at SIMS and Surface Analysis.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
Start and Vertex Detector W. Boeglin, A.Klein Current Design: 3300 scintillating fibers 1mm diameter 3 double layers (1 axial, 2 stereo) cylindrical geometry.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Developments of the FETS Ion Source Scott Lawrie.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
The 12th Symposium on Accelerator Physics, Yuzhong, Gansu, China1 Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT Youjin.
Performances of a GEM-based TPC prototype for the AMADEUS experiment Outline: GEM-TPC in AMADEUS experiment; Prototype design & construction; GEM: principle.
Techniques of Vacuum and Basics of High Voltage (3/3) Pauli Heikkinen Jyväskylä University.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT
Old Dominion University, Norfolk, Virginia 23529, USA
Fragmentation and lifetime of C60q+ trapped in a cone trap
JYFL ION COOLER AND BUNCHER.
Direct measurement of 4He(12C,16O)g reaction at KUTL*
Laser assisted decay spectroscopy at the cris beam line at
Potential Ion Gate using GEM: experiment and simulation
Vamos + Exogam Spectrometer
EffiCAS Efficient Facility for Ions at CAS
Status of Equatorial CXRS System Development
Physics Design on Injector I
Improvement of a dc-to-pulse conversion efficiency of FRAC
Presentation transcript:

Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche Lawrence Berkeley National Laboratory 11 th International Conference on Nucleus-Nucleus Collisions May 29, 2012 San Antonio, TX

Outline Region of Interest Berkeley Gas-filled Separator Trochoidal Mass Separator

ms ms ms s s ms  s ms s s ms ms  s ms ms  s s ms s ms ms ms s s ms ms ms ms  s s s ms ms s s s s s s s s s s ms ms ms s s s s s s h h m m ms s s ms s, 78 s s ms ms s s s ms s m m m m h d m m s s ms s s s s h h d d m m s m  s s d ms s s ms ms ms ms s s s s ms s s s s s s s s s ms s s s ms ms s s s m h s

Berkeley Gas-filled Separator (BGS)

Positive: High efficiency Large suppression of beam and unwanted reaction products

Berkeley Gas-filled Separator (BGS) Negatives: Large focal plane image Poor mass resolution High gamma background at focal plane

ms ms ms s s ms  s ms s s ms ms  s ms ms  s s ms s ms ms ms s s ms ms ms ms  s s s ms ms s s s s s s s s s s ms ms ms s s s s s s h h m m ms s s ms s, 78 s s ms ms s s s ms s m m m m h d m m s s ms s s s s h h d d m m s m  s s d ms s s ms ms ms ms s s s s ms s s s s s s s s s ms s s s ms ms s s s m h s

Scheme What we want to do: Collect recoils at focal plane of BGS Separate by mass Transport low-background region

Space Available 6 ft Cave 2 Beamline BGS Concrete Walls Support Beams

ANL Built Berk. Built Scheme BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box What we want to do: Collect recoils at focal plane of BGS Separate by mass Transport low-background region

> 2 μm metal foil with support grid Window BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

He ~ 100 mbar RF + DC SHE ion retains +1 or +2 charge Cylindrical and conical section Pitch > 0.5 mm, f ~ 1 MHz SHE ions swept out by gas flow Gas Catcher BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Match acceptance for mass analyzer RFQ Trap BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Current design based off of segmented rfq Current ion transport simulations agree with velocity distribution and axial distribution approx. Simulations (w/ current exp. param) match current beam properties Is this sufficient? New designs are being explored to minimize timing pulse width RFQ Trap BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Mass Analyzer: Requirements Fit at least 6 masses on C 3 Ability to determine implantation time High dispersion M/  M of >500 High efficiency Low extraction voltage from RFQ Fit within existing space BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Mass Analyzer: The Idea Typical mass separators Wien filter TOF ° Magnet Trochoid Separator - FIONA BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Mass Analyzer: The Idea BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Mass Analyzer: The Idea BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Ratio of E wien /E troc

FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 500 V/cm Magnet 1.5 T x A= A = V acc = 4000 keV Q = 2+

FIONA: Simulations Det. Box A= BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Einzel Lens Magnet 1.5 T x Electrode: 50 x 20 cm, 500 V/cm A = V acc = 4 kV Q = 2+

What it looks like on the FPD BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box A=

FIONA: Simulations Det. Box A= BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Einzel Lens Magnet 1.5 T x Electrode: 50 x 20 cm, 500 V/cm A = V acc = 4000 kV Q = 2+

How to get time information BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box A=

Facility Layout 6 ft Cave 2 Beamline BGS Concrete Walls Support Beams

Mass Analyzer: Requirements Fit at least 6 masses on C 3 Ability to determine implantation time High dispersion M/  M of >500 High efficiency Low extraction voltage from RFQ Fit within existing space BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Status and Future Currently building little-FIONA –0.55 T magnet –Xe ion source –MCP detector

FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 125 V/cm Magnet 0.5 T x A= A = Vacc = 1 kV Q = 1+

FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 125 V/cm Magnet 0.5 T x A= A = Vacc = 1 kV Q = 1+

What it looks like on the FPD BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

Status and Future Currently building little-FIONA –Xe ion source –0.55 T magnet –MCP detector All parts have been ordered/designed Testing and construction will begin in June

Thank For Your Attention