Holt McDougal Geometry 3-4 Perpendicular Lines Warm Up Solve each inequality. 1. x – 5 < 8 2. 3x + 1 < x Solve each equation. 3. 5y = 90 4. 5x + 15 = 90.

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Objective Prove and apply theorems about perpendicular lines.
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
Angles Formed by Parallel Lines and Transversals
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
Angles Formed by Parallel Lines and Transversals 3-2
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90 Solve the systems of equations. 5. x < 13 y =
Proof and Perpendicular Lines
Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Use Parallel Lines and Transversals 3-2
Objective Use the angles formed by a transversal to prove two lines are parallel.
Holt Geometry 3-6 Perpendicular Lines 3-6 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Holt McDougal Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Proving Lines Parallel
3-3 Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt McDougal Geometry 3-3 Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry.
Holt Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry.
§3.4, Perpendicular Lines 3-4 Perpendicular Lines
3-4 Perpendicular Lines Section 3.4 Holt McDougal Geometry
Entry Task Given: =180 Prove: L // m L m.
Holt McDougal Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Holt McDougal Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Perpendicular Lines Unit 2-4. Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90 Solve the systems.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3.4 Perpendicular Lines 3-4 Perpendicular Lines Holt McDougal Geometry
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Proving Lines Parallel
Proving Lines Parallel
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
2-6 Geometric Proof Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4: Vocabulary perpendicular bisector distance from a point to a line
Objective Prove and apply theorems about perpendicular lines.
3.4 Perpendicular lines.
Proving Lines Parallel
Warm Up Solve each inequality. 1. x – 5 < 8 x < 13
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Example 1A: Using the Converse of the Corresponding Angles Postulate
Angles Formed by Parallel Lines and Transversals 3-2
3-4: Vocabulary perpendicular bisector distance from a point to a line
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Notes 3.4 Perpendicular Lines.
Proving Lines Parallel
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Lesson Presentation Holt Geometry.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Angles Formed by Parallel Lines and Transversals 3-2
Presentation transcript:

Holt McDougal Geometry 3-4 Perpendicular Lines Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90 Solve the systems of equations. 5.

Holt McDougal Geometry 3-4 Perpendicular Lines Prove and apply theorems about perpendicular lines. Objective

Holt McDougal Geometry 3-4 Perpendicular Lines The perpendicular bisector of a segment is a line perpendicular to a segment at the segment’s midpoint. The shortest segment from a point to a line is perpendicular to the line. This fact is used to define the distance from a point to a line as the length of the perpendicular segment from the point to the line.

Holt McDougal Geometry 3-4 Perpendicular Lines Example 1: Distance From a Point to a Line The shortest distance from a point to a line is the length of the perpendicular segment, so AP is the shortest segment from A to BC. B. Write and solve an inequality for x. AC > AP x – 8 > 12 x > 20 Substitute x – 8 for AC and 12 for AP. Add 8 to both sides of the inequality. A. Name the shortest segment from point A to BC. AP is the shortest segment. + 8

Holt McDougal Geometry 3-4 Perpendicular Lines HYPOTHESISCONCLUSION

Holt McDougal Geometry 3-4 Perpendicular Lines StatementsReasons 2. 2  3 3. 1  3 3. Trans. Prop. of  2. Corr. s Post. 1. r || s, 1  2 1. Given 4. r  t 4. 2 intersecting lines form lin. pair of  s  lines . Write a two-column proof. Given: r || s, 1  2 Prove: r  t

Holt McDougal Geometry 3-4 Perpendicular Lines StatementsReasons 3. Given 2. Conv. of Alt. Int. s Thm. 1.  EHF  HFG 1. Given 4.  Transv. Thm Write a two-column proof. Given: Prove:

Holt McDougal Geometry 3-4 Perpendicular Lines Lesson Quiz: Part I 1. Write and solve an inequality for x. 2. Solve to find x and y in the diagram.

Holt McDougal Geometry 3-4 Perpendicular Lines Lesson Quiz: Part II 3. Complete the two-column proof below. Given: 1 ≅ 2, p  q Prove: p  r Proof StatementsReasons 1. 1 ≅ 2 1. Given 2. q || r 3. p  q 4. p  r 2. Conv. Of Corr. s Post. 3. Given 4.  Transv. Thm.

Holt McDougal Geometry 3-4 Perpendicular Lines Classwork/Homework Pg. 175 (1-22 all)