1 Electron Bernstein Wave Physics on NSTX - Taylor Electron Bernstein Wave Physics on NSTX G. Taylor, J.B. Caughman, M.D. Carter, S. Diem, P.C. Efthimion,

Slides:



Advertisements
Similar presentations
Potential Upgrades to the NBI System for NSTX-Upgrade SPG, TS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Advertisements

E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Summary of Presentations on Plasma Start-up and Progress on Small ST devices from STW2011 R. Raman University of Washington, Seattle, WA The Joint Meeting.
1 Electron Bernstein Wave Research and Plans Gary Taylor Presentation to the 16th NSTX Program Advisory Committee September 9, 2004.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
J.R. Wilson, R.E. Bell, S. Bernabei, T. Biewer, J. C. Hosea, B. LeBlanc, M. Ono, C. K. Phillips Princeton Plasma Physics Laboratory P. Ryan, D.W Swain.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
PCS Navigation D. Mueller January 26-28, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS.
EP-TSG session Meeting agenda et al. M. Podestà NSTX-U Research Forum 2015 EP-TSG session PPPL, Room B252 02/24/2015 NSTX-U Supported by Culham Sci Ctr.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
RF Operations: Commissioning the RF systems and antenna conditioning J. Hosea et al. NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Simple As Possible Plasmas (SAPP) on NSTX Adam McLean, ORNL Boundary TSG Session NSTX Research Forum Dec. 2, 2009 NSTX Supported by College W&M Colorado.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
ASC Five Year Plan Chapter Status Stefan Gerhardt NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu.
Wave Heating and Current Drive TSG: XMP for Recomissioning the HHFW System R.J. Perkins, J. C. Hosea Theory & Modeling: N. Bertelli NSTX-U Supported by.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
1 EBW & HHFW Research - G. Taylor PAC-19 2/23/06 EBW & HHFW Research (Including EBW Collaborations with MAST & P EGASUS ) Gary Taylor presented on behalf.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
NSTX-U Collaboration Plans for UCLA PI: Neal A. Crocker Co-PI: Prof. Troy Carter Grad. Student (planned 2 nd year onward) PPPL Research Contacts and Collaborators:
Overview of Results from the FY10 National Spherical Torus Experiment Run Eric Fredrickson For the NSTX Team NSTX Supported by College W&M Colorado Sch.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
NSTX Electron Bernstein Wave Research - Taylor 1 of 8 Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
NSTX NSTX Team Meeting –Masa Ono August 15, 2014 NSTX-U Team Meeting August 15, 2014 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
GO : Progress toward fully non-inductive operation in NSTX Jonathan Menard, PPPL For the NSTX Team 47 th Annual Meeting of the DPP Monday–Friday,
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
Supported by Office of Science NSTX K. Tritz, S. Kaye PPPL 2009 NSTX Research Forum PPPL, Princeton University Dec. 8-10, 2008 Transport and Turbulence.
Supported by Office of Science NSTX S.M. Kaye, PPPL For the NSTX Research Team T&C ITPA Mtg. Naka, Japan 31 March – 2 April 2009 Electron Scale Turbulence.
NSTX Team Meeting April 5, 2006 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
High Harmonic Fast Wave Deposition and Heating Results in NSTX*
Presentation transcript:

1 Electron Bernstein Wave Physics on NSTX - Taylor Electron Bernstein Wave Physics on NSTX G. Taylor, J.B. Caughman, M.D. Carter, S. Diem, P.C. Efthimion, R.W. Harvey, J. Preinhaelter, J.B. Wilgen, A. Bers, T.S. Bigelow, J. Decker, R.A. Ellis, N.M. Ershov, E. Fredd, J. Hosea, F. Jaeger, A.K. Ram, D.A. Rasmussen, A.P. Smirnov, J. Urban, J.R. Wilson 47 th APS – DPP Meeting Oct 24-28, 2005 Denver, Co. Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Supported by Office of Science

2 Electron Bernstein Wave Physics on NSTX - Taylor EBWCD Can Stabilize and Sustain Non-Inductive High  Spherical Torus (ST) Plasmas Deposition similar for 14 GHz & 28 GHz and  ~ 20-40% Large trapped particle fraction on low field side of STs enables efficient off-axis Ohkawa EBWCD for GHz EBWs NSTX,  ~ 40%, B t (0) = 3.5 kG CQL3D/GENRAY Total Bootstrap NBCD J // (A/Wb) C. Kessel, Invited Talk UI , Fri AM RFCD Tokamak Simulation Code Need resilient coupling to EBWs NSTX B t (0) = 3.5 kG Need ~100 kA of I p driven by RF between  = 0.4 &  = 0.8 G. Taylor, et al., Phys. Plasmas 11, 4733 (2004) A.K. Ram, Invited Talk QI , Thurs AM Parallel Current Density (arb. Units) Current Density (A/cm 2 ) 

3 Electron Bernstein Wave Physics on NSTX - Taylor, Poster RP Thurs PM J. Caughman, Poster RP Thurs PM Measured GHz EBW Emission this Year to Assess EBW Coupling Efficiency AORSA-1D full wave code predicts efficient EBW coupling at ~ 28 GHz into  ~ 40% NSTX plasmas via oblique O-X-B launch (n // ~ ± 0.5) into  ~ 40% NSTX plasmas via oblique O-X-B launch (n // ~ ± 0.5) EBW coupling efficiency sensitive to edge conditions; EBW emission EBW coupling efficiency sensitive to edge conditions; EBW emission studies can assess EBW coupling efficiency: studies can assess EBW coupling efficiency: - cannot test parametric decay or ponderomotive effects M. Carter ORNL AORSA-1D NSTX  = 40% B t (0) = 3.5 kG f = 28 GHz

4 Electron Bernstein Wave Physics on NSTX - Taylor Measured 80% EBW Coupling at GHz via B-X-O Coupling Last Year, Consistent with Modeling, Phys. Plasmas 12, (2005) G. Taylor et al., Phys. Plasmas 12, (2005) J. Preinhaelter et al., AIP Proc. 787, 349 (2005) 3-D ray tracing & full wave EBW mode conversion model using EFIT magnetic equilibrium & Thomson scattering T e & n e f =16.5 GHz NSTX Shot Frequency = 16.5 GHz, B t (0) = 4.5 kG

5 Electron Bernstein Wave Physics on NSTX - Taylor Evolution of Measured GHz EBW Emission Similar to Simulation, but T rad ~ 2-4 Times Smaller

6 Electron Bernstein Wave Physics on NSTX - Taylor Measured T rad at 25 GHz Comes from Both 2f ce Near Axis, & 3f ce Off-axis; Harmonic Mix Sensitive to EBW n // Radial access between Radial access between 2f ce & 3f ce sensitive to 2f ce & 3f ce sensitive to EBW n // due to EC EBW n // due to EC resonance Doppler resonance Doppler broadening broadening Poster RP Thurs PM J. Preinhaelter Poster RP Thurs PM EBW Ray Tracing

7 Electron Bernstein Wave Physics on NSTX - Taylor Collisional Loss at Upper Hybrid Resonance (UHR) May Explain Low Measured EBW T rad T e ~ eV near UHR T e ~ eV near UHR Collisional losses can be Collisional losses can be significant for T e < 30 eV significant for T e < 30 eV EBW conversion efficiency EBW conversion efficiency sensitive to Z eff at low T e sensitive to Z eff at low T e Large uncertainty in Thomson Large uncertainty in Thomson scattering T e near UHR: scattering T e near UHR: - few data points available - few data points available near UHR for simulation near UHR for simulation Measured emission polarization Measured emission polarization consistent with simulation consistent with simulation Measured T rad Simulated T rad with Z eff = 0 at UHR Simulated T rad with Z eff = 3 at UHR Simulated T rad with Z eff = 5 at UHR Shot = Frequency = 25 GHz Measured Emission Polarization (E para/ E perp ) T rad (keV ) Polarization From Simulation 1000 Time (s )

8 Electron Bernstein Wave Physics on NSTX - Taylor Off-Axis RF CD Critical to Sustained High  ST Operation EBWCD efficiently generates needed off-axis current Efficient EBW coupling predicted via oblique O-mode launch EBW emission used to test coupling predictions on NSTX Radial access between 2f ce & 3f ce sensitive to EBW n // spectrum When T e < 30 ev at UHR collisional losses may reduce EBW coupling efficiency: - more significant issue for coupling between f ce & 2f ce

9 Electron Bernstein Wave Physics on NSTX - Taylor Future Work Remotely-steered 8-18 GHz & GHz B-X-O antennas being installed on NSTX for next run campaign Detailed study of EBW B-X-O coupling in L-mode & H-mode Integrate GENRAY/CQL3D EBW modeling into TRANSP & evaluate effect of transport on EBWCD EBWCD benchmarking between GENRAY/CQL3D & BANDIT (Culham, UK) began earlier this year for  = 40% NSTX plasma : - BANDIT & GENRAY predict Ohkawa EBWCD at r/a ~ BANDIT: 26 kA/MW - GENRAY/CQL3D: 37 kA/MW - Further work needed to refine benchmarking