Precision spectroscopy of trapped HfF + with a coherence time of 1 second Kevin Cossel JILA eEDM collaboration.

Slides:



Advertisements
Similar presentations
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Advertisements

Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
1 Test of fundamental symmetries Sumerian, 2600 B.C. (British Museum) With thanks to Antoine Weis from an atomic physics perspective Mike Tarbutt.
Search for the electron’s EDM E.A. Hinds PCPV, Mahabaleshwar, 22 February 2013 Centre for Cold Matter Imperial College London Is the electron round?
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Single-ion Quantum Lock-in Amplifier
INVESTIGATIONS OF MAGNETICALLY ENHANCED RIE REACTORS WITH ROTATING (NON-UNIFORM) MAGNETIC FIELDS Natalia Yu. Babaeva and Mark J. Kushner University of.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Histogram of Blinded eEDM Data Number of Measurements T-Statistic of Blinded eEDM Measurements Order of Magnitude Smaller Limit on the Electric Dipole.
DeMille Group Dave DeMille, E. Altuntas, J. Ammon, S.B. Cahn, R. Paolino* Physics Department, Yale University *Physics Department, US Coast Guard Academy.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Tony Hyun Kim (Partner: Connor McEntee) 11/17/ MW2-5 Prof. Roland.
Measurement of the electron’s electric dipole moment
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Determination of Spin-Lattice Relaxation Time using 13C NMR
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Determination of fundamental constants using laser cooled molecular ions.
Z B Zhou, Y Z Bai, L Liu, D Y Tan, H Yin Center for Gravitational Experiments, School of Physics, Huazhong University of Science.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Pump/Probe Microwave-Optical Double Resonance (PPMODR) Study of Tungsten Carbide( WC) a and Platinum Carbide(PtC) b Funded by Fang Wang, Chengbing Qin,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Future electron EDM measurements using YbF
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Measuring the Electron EDM Using Ytterbium Fluoride (YbF) Molecules
TALKING DIRECTLY TO RYDBERG STATES Yan Zhou, David Grimes, Ethen Klein, Timothy Barnum, Robert Field laser mmW.
THEORETICAL STUDY OF THE PbF AND PbO MOLECULES Alexander N. Petrov PNPI QChem Group: B.P. Konstantinov PNPI RAS, St.-Petersburg State University, St.-Petersburg,
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
FEC 2006 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower.
HYPERFINE INTERACTION IN DIATOMICS AS A TOOL FOR VERIFICATION OF THEORETICAL VALUES FOR THE EFFECTIVE ELECTRIC FIELD ON ELECTRON A.N.Petrov PNPI QChem.
Ramsey Spectroscopy: Search for e- Dipole Moment
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland Open quantum systems: Decoherence and Control ITAMP Nov Coherent Control.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
Yan Zhou, Anthony Colombo, David Grimes, Robert Field Cooperative effects in a dense Rydberg gas.
RA07 Current Status of the University of Oklahoma e-EDM Search. John Moore-Furneaux*, Neil Shafer-Ray Columbus OH, 6/23/2011 *J.E. Furneaux.
Anna Korver, Dan Thrasher, and Thad Walker Northrop-Grumman Review September
Toward the use of Rydberg states for state-selective production of molecular ions David Grimes, Timothy J Barnum, Stephen Coy, Robert Field Department.
The YbF T-violaton experiment Ben Sauer. YbF experiment (2011) d e < 1 x e.cm (90% c.l.) We (and others!) are aiming here! What is interesting.
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Measurement of time reversal violation in YbF Ben Sauer.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
Second generation of JILA eEDM with trapped ThF+ ions
Alternate Gradient deceleration of large molecules
R.K. Altmann, L.S. Dreissen, S. Galtier and K.S.E. Eikema
Neutron and electron electric dipole moments
Resonant dipole-dipole energy transfer
Ultracold polar molecules in a 3D optical lattice
by I. Lovchinsky, A. O. Sushkov, E. Urbach, N. P. de Leon, S. Choi, K
Time-Resolved Recombination Dynamics of Large IBr-(CO2)n (n=11-14) Clusters Joshua P. Martin, Joshua P. Darr, Jack Barbera, Matt A. Thompson, Robert.
Presentation transcript:

Precision spectroscopy of trapped HfF + with a coherence time of 1 second Kevin Cossel JILA eEDM collaboration

An eEDM violates P and T-reversal symmetry The eEDM has very small Standard Model theory background so is a good test of new physics |d e | < 9 x e cm ACME [Science (2014)] d e [e cm] Extensions to the Std. Model Standard Model Test extensions to the Standard Model  Tests of particle physics at the 10 TeV level

Measure with electron spin resonance _ Measurement precision:

Trapped molecular ions Long coherence time Large effective electric field Use low-lying 3  1 level Use many ions for better statistics Thermal (1-10 K) cloud reduces systematics due to many ions Meyer, Bohn, Deskevich, PRA 73, (2006) Leanhardt et al, J. Mol. Spectrosc. 270, 1-25 (2011)

Experimental setup ~10 cm End cap (+V) Linear Paul trap confines HfF + : RF micromotion at  rf = 2  (50 kHz) Secular trap motion at ~ 2  (4 kHz) Rotating bias field at  rot = 2  (250 kHz) Anti-Helmholtz coils

Experimental setup ~10 cm End cap (+V) Linear Paul trap confines HfF + : RF drive frequency of 50 kHz Secular trap frequency ~ 4 kHz Anti-Helmholtz coils Bias field rotates at 250 kHz

E (cm -1 ) 0 16,000 1+1+ 3131 3232 3333 1212 3131 1111 3  0+ 3  0- 3  0+ 3232 3333 v=0 v=1 J=1 J=2 F=3/2 F=1/2 HfF + energy levels

3  1 J=1, F=3/2 -1/2 1/23/2 m F =-3/2

3  1 J=1, F=3/2 E lab -1/2 1/23/2 m F =-3/2

3  1 J=1, F=3/2 BrBr E lab -1/2 1/23/2 m F =-3/2

-1/2 1/23/2 3  1 J=1, F=3/2 m F =-3/2 |d e |>0 3g u μB + 2d e E eff E eff ~ 24GV/cm 3g l μB - 2d e E eff BrBr E lab Zeeman co-magnetometer (DeMille AIP Conf Proc. 596, 72 (2001))

Experimental Sequence: Transfer Hf F F F F + + t Transfer

t m F Depletion Hf F F +

 /2 pulse π/2 t Transfer Hf F F F F + +

Free evolution π/2 t Transfer Hf F F F F + +   E = 3g u μB + 2d e E eff

 /2 pulse Hf F F F F + + π/2 t Transfer

m F Depletion π/2 t Transfer Hf F F +

Population Readout π/2 t Photodissociation Dump ions Transfer Hf F F +

Ramsey fringes Fractional population difference Free-evolution time (ms)  > 1 s

-B-B +B Upper Doublet Lower Doublet f BD = ¼ x [(f u (B) – f u (-B)) – (f l (B) – f l (-B))] = 2 d e E eff = 0.09(33) Hz d e < 8 x e cm

Example sequence

eEDM measurements d e < 2.6 x e cm

Systematic errors Other linear combinations: Also switch rotation direction No systematics observed in f BD : Added static B fields Shifted trap center Different E rot

Outlook Current statistical sensitivity: 3 x e cm in 100 hours Evaluating systematic errors Short-term improvements (4x better sensitivity): Longer coherence time Improve transfer and detection efficiency Long-term use ThF + Ground state 3  1 < 1 x e cm

Thank you! Matt Grau Will Cairncross Dan Gresh Yan Zhou Yiqi Ni Jun Ye Eric Cornell Huanqian Loh Kang-Kuen Ni Aaron Leanhardt Russ Stutz Laura Sinclair Tyler Coffey Tyler Yahn Bob Field John Bohn Ed Meyer Chris Greene Jia Wang St Petersberg

Rotating E and B field E-field defines quantization axis Excellent rejection of lab-frame residual B-field.

 /2 pulse details II Erot t Depletion

fBD vs fB for stray gradients

Ion-ion collisions Electric field from collision results in Berry’s phase High U kin (T)  single collisions cause decoherence Low T  phase diffusion To increase coherence time: Lower density Lower temperature Increase E rot

Berry’s phase Geometrical (Berry’s) phase due to rotating quantization axis  F

3.2 mHz 2.8 x 10^-28 e- cm