Automatic detection of CMEs in STEREO-HI data Luciano Rodriguez, Sarah Willems, Vaibhav Pant, Marilena Mierla, Andy Devos and the HELCATS team ESWW12,

Slides:



Advertisements
Similar presentations
Chapter 8 The Sun – Our Star.
Advertisements

Prénom Nom Document Analysis: Document Image Processing Prof. Rolf Ingold, University of Fribourg Master course, spring semester 2008.
Solar Feature Catalogues S Zharkov, V V Zharkova, S S Ipson, A.Benkhalil, N.Fuller, J. Aboudarham.
Image Segmentation Image segmentation (segmentace obrazu) –division or separation of the image into segments (connected regions) of similar properties.
Digital Image Processing
Reviewing the Summer School Solar Labs Nicholas Gross.
COIN-O-MATIC A fast and reliable system for automatic coin classification Laurens van der MaatenPaul Boon.
Spatially Constrained Segmentation of Dermoscopy Images
Facial feature localization Presented by: Harvest Jang Spring 2002.
1 Formation et Analyse d’Images Session 12 Daniela Hall 16 January 2006.
E. Robbrecht – SIDC- Royal Observatory of Belgium 8 March 2007 The statistical importance of narrow CMEs Open questions to be addressed by SECCHI Eva Robbrecht,
CS443: Digital Imaging and Multimedia Point Operations on Digital Images Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Spring.
Automatic Face Recognition Using Color Based Segmentation and Intelligent Energy Detection Michael Padilla and Zihong Fan Group 16 EE368, Spring
1 Determination of 3D CME Trajectories using Stereoscopy Paulett Liewer, Jeff Hall, Eric DeJong, JPL Vahab Pournaghsband, UCB Arnaud Thernisien and Russ.
Face Detection: a Survey Speaker: Mine-Quan Jing National Chiao Tung University.
CME-driven Shocks in White Light Observations SOHO/LASCO C3 – CME May 5 th, 1999 CME-driven Shock We demonstrate that CME-driven shocks: (1) can be detected.
Mapping with Probability – The Fortunate Isles Anthony Smith, Andrew Hopkins, Dick Hunstead.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
Color a* b* Brightness L* Texture Original Image Features Feature combination E D 22 Boundary Processing Textons A B C A B C 22 Region Processing.
Solar Image Processing at SIDC - Royal Observatory of Belgium J.-F. Hochedez, V. Delouille, S. Gissot, E. Robbrecht, B. Nicula, O. Podladchikova, J. de.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Introduction The réseau grid of 27 horizontal and 27 vertical lines was originally superimposed over Carte du Ciel (CdC) plates to assist the process of.
Assessing Predictions of CME Time- of-Arrival and 1 AU Speed to Observations Angelos Vourlidas Vourlidas- SHINE
 Tsung-Sheng Fu, Hua-Tsung Chen, Chien-Li Chou, Wen-Jiin Tsai, and Suh-Yin Lee Visual Communications and Image Processing (VCIP), 2011 IEEE, 6-9 Nov.
P MODE TRAVEL TIME IN ACTIVE REGIONS USING TIME-DISTANCE METHOD CRAAG, Observatory of Algiers, BP 63 Bouzareah 16340, Algiers, Algeria. (1)
1 Determination of CME 3D Trajectories using COR Stereoscopy + Analysis of HI1 CME Tracks P. C. Liewer, E. M. DeJong, J. R. Hall, JPL/Caltech; N. Sheeley,
RECREATING THE THREE DIMENSIONAL STRUCTURE OF INTERPLANETARY CORONAL MASS EJECTIONS Timothy A. Howard and S. James Tappin AGU Fall Meeting, December,
1 THE RELATION BETWEEN CORONAL EIT WAVE AND MAGNETIC CONFIGURATION Speakers: Xin Chen
National Research Council Canada Conseil national de recherches Canada National Research Council Canada Conseil national de recherches Canada Institute.
HP-PURDUE-CONFIDENTIAL Final Exam May 16th 2008 Slide No.1 Outline Motivations Analytical Model of Skew Effect and its Compensation in Banding and MTF.
CIS 601 Image ENHANCEMENT in the SPATIAL DOMAIN Dr. Rolf Lakaemper.
Status of automatic scanning and vertex recognition at Toho Univ. September 27, Gyeongsang National University H. Shibuya, S. Ogawa, S. Fukunaga,
SHINE SEP Campaign Events: Long-term development of solar corona in build-up to the SEP events of 21 April 2002 and 24 August 2002 A. J. Coyner, D. Alexander,
The Wavelet Packets Equalization Technique: Applications on LASCO Images M.Mierla, R. Schwenn, G. Stenborg.
1 Machine Learning and Data Mining for Automatic Detection and Interpretation of Solar Events Jie Zhang (Presenting, Co-I, SCS*) Art Poland (PI, SCS*)
Solar Image Processing at SIDC - Royal Observatory of Belgium J.-F. Hochedez, V. Delouille, S. Gissot, E. Robbrecht, B. Nicula, O. Podladchikova, J. de.
The Space Weather Week Monique Pick LESIA, Observatoire de Paris November 2006.
1 Machine Vision. 2 VISION the most powerful sense.
Solar System Physics Group Simultaneous Heliospheric Imager and Interplanetary Scintillation observations of CMEs and CIRs Gareth D. Dorrian
Modeling of CME-driven Shock propagation with ENLIL simulations using flux-rope and cone-model inputs Using observations from STEREO/SECCHI and SOHO/LASCO,
Laboratoire de Physique des Plasmas S OLAR E VENTS TOWARDS THE E ARTH IN 2002 B.Schmieder (1), N. Cornilleau-Wehrlin (1), K. Bocchialini (2), M. Menvielle.
The ICME’s magnetic field and the role on the galactic cosmic ray modulation for the solar cycle 23 Evangelos Paouris and Helen Mavromichalaki National.
Xie – STEREO SWG – Dublin – March 2010 Low Mass Coronal Mass Ejections Missed by STEREO A/B or LASCO and Associated ICMEs H. Xie 1,2, O. C. St. Cyr 2,
SOLAR DEMON DETECTING FLARES, DIMMINGS, AND EUV WAVES IN NEAR REAL-TIME ON SDO/AIA IMAGES Emil Kraaikamp (p), Cis Verbeeck – Royal Observatory of Belgium.
An Optical Search for Small Comets R. L. Mutel & J.D. Fix University of Iowa An Optical Search for Small Comets R. L. Mutel & J.D. Fix University of Iowa.
Probing Coronal Mass Ejections with Faraday Rotation Measurements Steven R. Spangler and Catherine A. Whiting University of Iowa.
How massive is a CME? The greater accuracy offered by STEREO Eoin Carley R.T. James McAteer, Peter T. Gallagher Astrophysics Research Group, TCD.
The CME geomagnetic forecast tool (CGFT) M. Dumbović 1, A. Devos 2, L. Rodriguez 2, B. Vršnak 1, E. Kraaikamp 2, B. Bourgoignie 2, J. Čalogović 1 1 Hvar.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
UW Madison Digital Image Processing Adam Slater and Matt McCormick / 12/14/2005 / Page 1 Breast Tumor Segmentation.
The COMESEP Space Weather Alert System Luciano Rodriguez on behalf of the COMESEP Consortium (European Commission FP7 Project )
OSIRIS Solar System Simulator
B.V. Jackson H.-S. Yu, P.P. Hick, A. Buffington,
Towards unambiguous characterization of coronal structures
Driving 3D-MHD codes Using the UCSD Tomography
Signal and Image Processing Lab
HELCATS Heliospheric Cataloguing, Analysis and Techniques Service
On the three-dimensional configuration of coronal mass ejections
HELCATS Heliospheric Cataloguing, Analysis and Techniques Service
Image enhancement algorithms & techniques Point-wise operations
Jean Ballet, CEA Saclay GSFC, 31 May 2006 All-sky source search
Investigations of CME in muon flux detected in hodoscopic mode
ESWW 13 – Oostende, Belgium – November 2016
Difficult to relate EIT waves to other phenomena due to cadence
Aim of the project Take your image Submit it to the search engine
Images reconstruction. Radon transform.
CIS 4350 Image ENHANCEMENT SPATIAL DOMAIN
Spatial statistics of X-ray volumes reveal layering and spatially diverse distribution of cell bodies. Spatial statistics of X-ray volumes reveal layering.
Image segmentation Grey scale image Binary image
Artistic Rendering Final Project Initial Proposal
Presentation transcript:

Automatic detection of CMEs in STEREO-HI data Luciano Rodriguez, Sarah Willems, Vaibhav Pant, Marilena Mierla, Andy Devos and the HELCATS team ESWW12, 24 th November 2015

HELCATS EU FP7 project ( ) Create CME and CIR catalogues, mainly based on STEREO-Hi data (but not only), analyse their kinematic properties and initialise models based on these properties. Poster (Plotnikov et al., Session 8, Wed) and a fair stand on Wed

Automatic CME catalogue: Application of CACTus on STEREO/HI1

Different geometry CMEs are fainter Include planets and stars Lower cadence

Preprocessing After some cleaningL2 images (1-day backgrounds removed)

Conversion to polar coordinates Angle from solar north Projected distance from Sun (100,000 km/px)

r-t slices Extraction of r – t slices for each angle. t r r t [r, t] for each θ

CME extraction Detected ridgesr-t slice t-v map Original data Filtered data CMEs are seen in r-t slices as bright ridges by using the Hough transform. r-t map Detected ridges

CACTus output # CME | t0 | pa | da | NoPA| SuPA| v | dv | minv| maxv 0006|2010/04/03 12:09| 0102| 072| 0066| 0138| 0823| 0110| 0571| 1041 Position and width Speed Starting time

The catalogue

Manual vs. Automatic

Position angle CME PA Histogram density CME PA (manual) CME PA (auto)

Angular width CME AW (manual) CME AW Histogram density CME AW (auto)

Speeds Histogram density CME speed (km/s) CME speed (manual) CME speed (auto)

Automatic CME rate vs. sunspot number

Work on progress and future Comparison of manual and automatic catalogues Initial statistical analysys Visual inspection of events Analysis of individual cases Comparison with other catalogues Real time catalogue of CACTus for HI: CACThi !

Extra material

CACTus output: Visualisation After some thresholding and clustering we obtain the final detection map in which each color indicates a different CME.