Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.

Slides:



Advertisements
Similar presentations
Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven Huelva 09/11/2011 IntroductionREX-ISOLDEResultsThe future Transfer reactions at ISOLDE:
Advertisements

Advanced GAmma Tracking Array
MINIBALL g-ray Spectroscopy far from Stability
University of Liverpool
Study of single particle properties of neutron-rich Na istopes on the „shore of the island of inversion“ by means of neutron-transfer reactions Thorsten.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
The b -delayed deuteron-decay of 6 He J. Ponsaers, R. Raabe, F. Aksouh, D. Smirnov, I. Mukha, A. Sanchez, M. Huyse, P. Van Duppen, C. Angulo, O. Ivanov,
Study of the  -decay of 12 B Proposal to INTC 25th February 2002 SpokespersonH.O.U. Fynbo ContactpersonU.C. Bergmann.
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
UNIVERSITY OF JYVÄSKYLÄ Results from the first tests with the SPEDE spectrometer Philippos Papadakis ISOLDE Workshop and Users Meeting 2014.
Nele Kesteloot1,2 On behalf of the IS452/IS479 collaboration
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
Relativistic Coulomb Excitation of Neutron-Rich 54,56,58 Cr Herbert Hübel Helmholtz-Institut für Strahlen- und Kernphysik Universität Bonn Germany.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
UNIVERSITY OF JYVÄSKYLÄ RDDS measurements at RITU and prospects at HIE-ISOLDE T. Grahn University of Jyväskylä HIE-ISOLDE Spectrometer Workshop, Lund
Evolution of nuclear shape in the light Radon isotopes Andrew Robinson, David Jenkins, Stewart Martin-Haugh University of York Jarno Van De Walle CERN.
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Beta-decay studies of neutron-rich Fe, Co and Ni isotopes at LISOL using the MINIBALL detector Dieter Pauwels, Oleg V. Ivanov, Maria Sawicka, Mark Huyse,
Lifetime measurements from EXILL-FATIMA campaign Pietro Spagnoletti University of the West of Scotland.
James Cubiss University of York On behalf of the IS534, Sep 2014 collaboration Hyperfine structure studies of At isotopes using in-source.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Leuven - Mainz - ISOLDE collaboration at CERN
Title page J Van de Walle 1, I. Stefanescu 1, P Mayet 1, O Ivanov 1, F Aksouh 1, D Smirnov 1, JC Thomas 1, R Raabe 1, M Huyse 1, P Van Duppen 1 1 IKS KULeuven.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Recoil-beta tagging David Jenkins. Odd-odd N=Z Fascinating laboratory for studying interplay of T=0 and T=1 states Very unusual low level density for.
Dipa Bandyopadhyay University of York
UNIVERSITY OF JYVÄSKYLÄ Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of 208 Po and 210,212 Rn Addendum.
ISOLDE Workshop CERN, 5 December 2011 Beta-decay studies of neutron-rich manganese isotopes D. Pauwels 1,2, D. Radulov 1, J. Van de Walle 3, I.G. Darby.
I. I.4. T HE R EGION A=100, N=60 N E U T R O N S PHERICAL - LIKE W ELL D EFORMED Neutron Rich side What are the origins of the development of deformation?
Study of isomeric states using gamma spectroscopy around N=40 C. Petrone 1,2, J. M. Daugas 3, M. Stanoiu 1, F. Negoita 1, G. Simpson 4, C. Borcea 1, R.
 -delayed fission of neutron-deficient Fr and At isotopes Lars Ghys 1,2 1 Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, B-3001.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Shape coexistence in the neutron- deficient Pb region: Coulomb excitation at REX-ISOLDE Liam Gaffney 1,2 Nele Kesteloot 2,3 1 University of the West of.
Technical solutions for N=Z Physics David Jenkins.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
KS group meeting April 2007Transfer reactions at REX-ISOLDE: Status and a physical case to be studied K. U. Leuven One Nucleon Transfer Reactions Around.
Detection of X rays in the Neutron-Deficient Polonium Coulomb Excitation Experiments Nele Kesteloot IKS KU Leuven SCK CEN.
Coulomb excitation of the two proton-hole nucleus 206 Hg CERN-ISOLDE, Geneva, Switzerland (M. Kowalska, E. Rapisarda, T. Stora, F.J.C. Wenander) GSI, Darmstadt,
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Coulomb excitation of Coulomb excitation of doubly magic 132 Sn with MINIBALL at HIE-ISOLDE P. Reiter 1, D. Rosiak 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev.
Young Researchers Session in IFIN-HH 2016
Georgi Georgiev CSNSM, Orsay, France
Coulomb Excitation of Neutron-rich
Thorsten Kröll* / Gary Simpson+
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Emmanuel Clément IN2P3/GANIL – Caen France
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
Tan Ahn, S. Henderson, S. Aguilar, A. Simon, W. P. Tan,
Recent Highlights and Future Plans at VAMOS
Coulomb Excitation of 114, 116Sn
108Sn studied with intermediate-energy Coulomb excitation
Presentation transcript:

Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth 3, P. van Duppen 2, S. Das Gupta 4, H. de Witte 2, J. Diriken 2, C. Fransen 1, L. Gaffney 5, D. Jenkins 3, N. Marginean 6, D. Radeck 1, S. Rigby 5, M. Scheck 5, M. Seidlitz 1, B. Siebeck 1, G. Simpson 7, B.S. Nara Singh 3, T. Thomas 1, J. van de Walle 8, B. Wadsworth 3, the REX-ISOLDE Collaboration, and the MINIBALL Collaboration 1: Institut für Kernphysik der Universität zu Köln, Germany 2: Instituut voor Kern- en Stralingsfysíca, KU Leuven, Belgium 3: Department of Physics, University of York, United Kingdom 4: Dipartemento di Fisica, Universita di Camerino and INFN-Sezione di Perugia, Italy 5: Department of Physics, University of Liverpool, United Kingdom 6: H. Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania 7: LPSC, Universite Joseph Fourier Grenoble, France 8: PH Department, Cern, Switzerland

Outline 1. Introduction and motivation 2. Experimental setup and data analysis 3. Experiment on 94 Kr 4. Experiment on 96 Kr 5. Conclusion and outlook

Introduction A~100 mass region is well suited for understanding the development of collectivity N=50 Shell closure

N=50 Shell closure 1: A. Kumar, M.R. Guyne, Phys. Rev. C32(1985)2116; 2: W. Urban et al., Nucl. Phys. A 689 (2001) 605 Interpretation: correlated occupation of Nilsson states: πg 9/2 ν h 11/2 (1,2) krypton-isotopes: Z=36  reduced pn-interaction ?

Mean-Square Charge Radii Number of Neutrons δ [fm 2 ] M. Keim et al., Nucl. Phys. A586 (1995)

N=50 Shell closure E(2 + 1, 96 Kr)*=241 keV *: N. Marginean et al., PRC80, (2009),

Setup of the experiment on 94 Kr Beam: 94 MeV/u delivered by the REX-ISOLDE post accelerator primary target: UC X mass separation: “High Resolution Separator” (HRS) t collect + t breed ≈ 80ms ions at the target: 3 ∙ 10 5 ions/sec charge state: 22+ target: 196 Pt (~17h) and 48 Ti (~2h) particle and γ detectors: the high-efficiency MINIBALL γ -ray spectrometer for the detection of the emitted γ quants a DSSD detector for particle gate and Doppler- correction an ionization chamber for measurement of beam composition and identification of beam contaminants

MINIBALL γ-ray spectrometer Online γ -spectrum with 268 MeV 94 Kr beam on 196 Pt target 94 Sr 94 Zr 94 Y 94 Sr 94 Zr 511 keV 94 Y energy [keV] Consisting of 8 MINIBALL cluster detectors with 18 segments per cluster Energy and efficiency calibration performed using a 152 Eu source

Double sided silicon strip detector (DSSD) Consisting of four quadrants 16 annular strips per quadrant at the front 24 radiant segments per quadrant the back total area: 50cm² (93% active) calibration performed using a quad-alpha source

Ionization chamber Gas in ( CF 4 ) Ionization chamber Si Detector Ions from REX

Ionization chamber Calibration (using a stable beam) is difficult:  Detector-response not linear to dE and E  dE,E depending on Z,A,Q (stripping on Mylar-Foile!)  working on simulations... 1: 4 He 2+ 2: 12 C 3+ 3: 16 O 4+ 4: 20 Ne 5+ 5: 40 Ar 10+ 6: 80 Kr A/q=4

Identification of 94 Kr beam components 94 Kr 94 Rb ≈ 30(3)% T 1/2 ( 94 Kr)=212 ms t collect + t breed ≈ 80ms Radioactive decay law:  ~24% of 94 Kr decays to 94 Rb A/q=4.273

Particle gated γ- spectra of 94 Kr particles on 196 Pt annular strip particle energy Catkin* calculation of the reaction kinematic Experimentally determined particle energy vs. lab angle *: catkin2.02, W.N. Catford (1998,2005) Kr+Rb-particles Pt-particles γ peaks caused by Coulex reaction appear Doppler shifted in the γ spectrum, because the Coulomb excited ions emit their γ probably in flight. By setting a particle gate, the Doppler shifted γ peaks can be corrected.

Particle gated γ- spectra of 94 Kr particles on 196 Pt energy [keV] Particle gate on Kr-region Doppler-correction for A=94 Particle gate on Pt-region Doppler-correction for A= > Pt 94 Kr, 2 + ->0 +

Determination of the absolute transition strength Using the computer code CLX* by Ower et al, based upon the Coulex theory of Winther and de Boer** σ P,T ~ B(E2 ;  ) P,T 196 Pt: B(E2;  ) = 40.6(2) W.u.  94 Kr: B(E2;  ) = 23.5(52) W.u. τ = 7.3(16) ps *: H. Ower, computer code CLX **: A. Winther and J. de Boer, Coulomb Excitation, (Academic, New York, 1965)

Setup of the experiment on 96 Kr Beam: 96 MeV/u delivered by the REX-ISOLDE post accelerator primary target: UC X mass separation: “High Resolution Separator” (HRS) t collect + t breed ≈ 110ms Charge state: 23+ Particles at the target: 1.2 ∙ 10 4 ions/sec Target: 196 Pt (~9h): CERN-wide power failure Particle and γ detectors: the high-efficiency MINIBALL γ -ray spectrometer for the detection of the emitted γ quants A DSSD detector for particle gate and Doppler- correction A Ionization chamber for measurement of beam composition and identification of beam contaminants

Identification of 96 Kr beam components T 1/2 ( 96 Kr) ≈ 80 ms t collect + t breed ≈ 110ms Radioactive decay law:  ~62% of 96 Kr decays to 96 Rb E Rest [ch.] dE gas [ch.] T1-Time (s) 96 Kr, 96 Rb Beam-Gate A/q=4.174

Separation of 96 Kr from decay products T 1/2 ( 96 Kr) ≈ 80 ms t collect + t breed ≈ 110ms Radioactive decay law:  ~62% of 96 Kr decays to 96 Rb dE gas [ch.] Counts 94 Kr 94 Rb 96 Kr 96 Rb

Particle gated γ- spectra of 96 Kr particles on 196 Pt annular strip particle energy Experimentally determined particle energy vs. lab angle Kr+Rb particles Pt-particles

Particle gated γ-spectra Prompt γ, any particle T1< 600 ms ?! Gate on Kr+Rb Doppler corrected for A=96 T1 < 600 ms Keep in mind: 4 + -> Pt: 521 keV 552 keV ? (~195 keV)

Particle gated γ-spectra ?! Gate on Kr+Rb Doppler corrected for A=96 T1 < 600 ms Keep in mind: 4 + -> Pt: 521 keV 552 keV ? (~195 keV) Prompt γ, any particle T1> 600 ms

? ?

Mean-Square Charge Radii Number of Neutrons δ [fm 2 ] M. Keim et al., Nucl. Phys. A586 (1995)

Conclusion and Outlook We determined a B(E2;  ) value of 23.5(52) W.u. for 94 Kr, which results in a lifetime of the state of τ = 7.3(16) ps. An ionization chamber was used to measure the beam composition and to identify several contaminants, especially for the 96 Kr beam Our data on 96 Kr do not confirm the previously known value of E(2 + 1 ) so far. In contrast, we have some evidence for a state at about 552 keV.  Continuation of the experiment needed, maybe using a different charge state (23+  22+) to reduce the charge breeding and charge collecting time