ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino
Dynamics
task space joint Dynamics studies the relations between the task space forces/torques and the joint forces/torques in non-static equilibrium, i.e., when the robot moves The dynamic model equation can be obtained applying two main approaches Lagrange equations based on energy functions Newton-Euler equations based on the equilibrium of the vector forces The first approach is conceptually simpler and will be adopted here The second approach is more efficient for implementation of recursive computer algorithms; only a brief review of this approach will be presented here 3 ROBOTICS 01PEEQW /2016 Dynamics – 1
The dynamic equations of the robot can be obtained adopting the Lagrange approach The derived state-space differential equations represent the robot dynamical model Why state equations are necessary? Used for control design Used for robot simulation Used to implement model identification or parameter estimation algorithms 4 ROBOTICS 01PEEQW /2016 Dynamics – 2
5 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 1
6 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 2
7 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 3
8 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 4
9 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 5
10 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 6
11 ROBOTICS 01PEEQW /2016 Newton-Euler approach – 7
12 ROBOTICS 01PEEQW /2016 Lagrange equations – 1
13 ROBOTICS 01PEEQW /2016 Lagrange equations – 2
14 ROBOTICS 01PEEQW /2016 Lagrange equations – 3
15 ROBOTICS 01PEEQW /2016 Lagrange equations – 4
16 ROBOTICS 01PEEQW /2016 Kinetic Energy – 1
17 ROBOTICS 01PEEQW /2016 Kinetic Energy – 2
18 ROBOTICS 01PEEQW /2016 Kinetic Energy – 3 First form for the Kinetic Energy
19 ROBOTICS 01PEEQW /2016 Kinetic Energy – 1 Second form for the Kinetic Energy
20 ROBOTICS 01PEEQW /2016 Potential Energy – 1
21 ROBOTICS 01PEEQW /2016 Potential Energy – 2
22 ROBOTICS 01PEEQW /2016 Potential Energy – 3
23 ROBOTICS 01PEEQW /2016 Generalized forces – 1
24 ROBOTICS 01PEEQW /2016 Generalized forces – 2
25 ROBOTICS 01PEEQW /2016 Generalized forces – 3
26 ROBOTICS 01PEEQW /2016 Final equations – 1
27 ROBOTICS 01PEEQW /2016 Final equations – 2
28 ROBOTICS 01PEEQW /2016 Final equations – 3
29 ROBOTICS 01PEEQW /2016 Physical interpretation –
30 ROBOTICS 01PEEQW /2016 Physical interpretation –
31 ROBOTICS 01PEEQW /2016 Properties of the Lagrange Equations – 1
32 ROBOTICS 01PEEQW /2016 Properties of the Lagrange Equations – 2
33 ROBOTICS 01PEEQW /2016 Properties of the Lagrange Equations – 3
34 ROBOTICS 01PEEQW /2016 Dynamic calibration – 1
Collecting all data one obtains 35 ROBOTICS 01PEEQW /2016 Dynamic calibration – 2 The linear least square solution is then computed, as follows
36 ROBOTICS 01PEEQW /2016 State equations – 1
37 ROBOTICS 01PEEQW /2016 State equations – 2
38 ROBOTICS 01PEEQW /2016 Direct and inverse dynamics
39 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 1
40 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 2
41 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 3
42 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 4
43 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 5
44 ROBOTICS 01PEEQW /2016 Numerical recursive algorithms – 6
Dynamics equations are essential for modeling and control purposes Modeling is easier to understand adopting the Lagrange energy function Computer program are more efficient if they implement recursive Newton-Euler approach Nonlinear state equations have this form 45 ROBOTICS 01PEEQW /2016 Conclusions Nonlinearities Products, squares, trigonometric functions here