Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.

Slides:



Advertisements
Similar presentations
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Overview of Light Scalar Resonances 13th Intl. Confernce on Meson-Nucleon.
Advertisements

Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Present status of Light Flavoured Scalar Resonances II Spanish-Russian.
José A. Oller Univ. Murcia, Spain The Mixing Angle of the Lightest Scalar Nonet José A. Oller Univ. Murcia, Spain Introduction Chiral Unitary Approach.
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Resent BES Results on Scalar Mesons Zhipeng Zheng (Representing BES Collaboration) Institute of High Energy Physics, CAS GHP-2004, Oct. 25.
José A. Oller Univ. Murcia, Spain Final State Interactions in Hadronic D decays José A. Oller Univ. Murcia, Spain Introduction FSI in the D + !  -  +
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
José A. Oller Univ. Murcia, Spain Radiative  Decays and Scalar Dynamics José A. Oller Univ. Murcia, Spain Introduction Chiral Unitary Approach Scalar.
The role of the tetraquark at nonzero temperature Francesco Giacosa in collaboration with A. Heinz, S. Strüber, D. H. Rischke ITP, Goethe University, Frankfurt.
José A. Oller Univ. Murcia, Spain Chiral Dynamics of the Two Λ(1405) States José A. Oller Univ. Murcia, Spain Introduction: The Chiral Unitary Approach.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Theoretical study of e+e-  PP' and the new resonance X(2175) M. Napsuciale Universidad de Guanajuato E. Oset, K. Sasaki, C. A. Vaquera Araujo, S. Gómez.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Precise dispersive analysis of the f0(600) and f0(980) resonances R.
Understanding the QGP through Spectral Functions and Euclidean Correlators BNL April 2008 Angel Gómez Nicola Universidad Complutense Madrid IN MEDIUM LIGHT.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. Ruiz de Elvira in collaboration with R. García Martín R. Kaminski Jose R. Peláez.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
On the precision of  scattering from chiral dispersive calculations José R. Peláez Departamento de Física Teórica II. Universidad Complutense de Madrid.
Twist-3 distribution amplitudes of scalar mesons from QCD sum rules Y.M Wang In collaboration with C.D Lu and H. Zou Institute of High Energy Physics,
Few Body-18Santos, Brazil August 25, Meson Exchange Currents in Pion Double Charge Exchange Reaction Roman Ya. Kezerashvili NY City College of Technology.
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Non-ordinary light meson couplings and the 1/Nc expansion Departamento de Física Teórica II. Universidad Complutense de Madrid J.R. Peláez PRD90,
Limitations of Partial Quenching Stephen Sharpe and Ruth Van de Water, University of Washington, Seattle QCD with 3 flavors (u, d, s) possesses an approximate.
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
Nucleon Polarizabilities: Theory and Experiments
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
KHALED TEILAB IN COLLABORATION WITH SUSANNA GALLAS, FRANCESCO GIACOSA AND DIRK H. RISCHKE Meson production in proton-proton scattering within an eLSM.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Departamento de Física Teórica II. Universidad Complutense de Madrid J. R. Peláez Identification of non-ordinary mesons from their Regge trajectories obtained.
Scalar and pseudoscalar mesons at BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, CAS, China Charm06, June 5-7, 2006,
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Nils A. Törnqvist University of Helsinki Talk at Frascati January The Light Scalar Nonet, the sigma(600), and the EW Higgs.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Chiral Symmetry Breaking,  and  History: Gell-Mann and Levy, Nambu, Adler and Weinberg laid the foundations in the 1960s. Many theorists realised the.
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
ANALYTIC APPROACH TO CONSTRUCTING EFFECTIVE THEORY OF STRONG INTERACTIONS AND ITS APPLICATION TO PION-NUCLEON SCATTERING A.N.Safronov Institute of Nuclear.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Extending forward scattering Regge Theory to internediate energies José R. Peláez Departamento de Física Teórica II. Universidad Complutense de Madrid.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Chiral Extrapolations of light resonances
Enhanced non-qqbar and non-glueball Nc behavior of light scalar mesons
Hadron excitations as resonant particles in hadron reactions
Resonance saturation at next-to-leading order
Lattice College of William and Mary
Review of light scalars: from confusion to precision
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Recent results on light hadron spectroscopy at BES
National Taiwan University
New insights into from U(3) chiral effective theory
Testing the Structure of Scalar Mesons in B Weak Decays
The nature of the lightest scalar meson, its Nc behavior
: the dispersive and analytic approach
Some topics on D and Ds decays
Understanding DsJ*(2317) and DsJ(2460)
The decays KS, L into four leptons
Presentation transcript:

Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION THEORY AND LARGE N C Phys.Rev.Lett.92:102001,2004

OUTLOOK OVERVIEW of Unitarization of ChPT amplitudes: Complete one-loop meson-meson scattering Nature of resonances: Link with QCD through the large Nc limit Some light on the hadron spectroscopy has come from unitarized Chiral Lagrangians The paradigmatic example is meson-meson scattering and unitarized Chiral Perturbation Theory Poles in the amplitudes with the complete calculation. Multiplets.

OUTLOOK INTRODUCTION: Unitarization of ChPT amplitudes: Complete one-loop meson meson scattering

Chiral Perturbation Theory Weinberg, Gasser & Leutwyler , K,  Goldstone Bosons of the spontaneous chiral symmetry breaking SU(N f ) V  SU(N f ) A  SU(N f ) V QCD degrees of freedom at low energies  4  f  1.2 GeV  ChPT  The most general expansion in energies compatible with the QCD symmetry breaking Leading order parameters: breaking scale f 0 and masses At 1-loop, QCD dynamics encoded in measurable chiral parameters: L 1...L 8 also their large N c behavior known from QCD Limited to low energies

Partial wave unitarity (On the real axis above threshold) exactly unitary !! ChPT = series in p 2 perturbative unitarity provides.... If t 4 defined to satisfy IAM exact Unitarity and the Inverse Amplitude Method: One channel

Truong, Dobado, Herrero, Pelaez Unitarity + Chiral Low energy expansion Justified within dispersion Theory (But left cut approximated !!) Dynamically Generates Poles  Resonances: , K*,  The Inverse Amplitude Method: Results for one channel   (770) K * (890) Width/2 Mass

Partial wave unitarity (On the real axis above all thresholds) ChPT = series in p 2 perturbative unitarity provides.... exactly unitary !! exact If T 4 defined to satisfy Coupled channel IAM Oller, Oset, Peláez, PRL80(1998)3452, PRD59,(1999) Unitarity and the Inverse Amplitude Method: Multiple channels

  SU(2): Gasser & Leutwyler, Ann. Phys.158,142 (1984) SU(3): Bernard,Kaiser,Mei  ner, Nuc.Phys B357 (1991)129 K  K  : Bernard,Kaiser,Mei  ner, Phys.Rev. D43 (1991) 2757 Bernard,Kaiser,Mei  ner, Phys.Rev. D44 (1991) 2398   K  K  : K  K     8 Amplitudes +chiral symmetry +crossing Complete meson-meson scattering below 1.2 GeV Guerrero, Oller, Nuc.Phys.B537 (1999) 459 K + K -  K + K - K + K -  K 0 K 0 Gómez-Nicola, Peláez Phys. Rev. D65:054009, (2002) this 3 new amplitudes at one-loop in MS-1 scheme + All the others recalculated to satisfy “exact” perturbative unitarity Meson-meson Scattering at one loop in Chiral Perturbation Theory

IAM fit to meson-meson scattering (+3% syst.)  f 0 (980) a0a0  (900) K * (892)  low-energy  00 -  11   00 d   /dE lab   20      3/2 0 K  K   1/2 1 K  K   1/2 0   11    00

First, IAM with previous ChPT parameters (we could not compare before)  resonant features Incompatible sets of Data. Customarily add systematic error: MINUIT fit : 3%, Final error: MINUIT error combined with syst. error Identical curves but variation in parameters 1%, 5% IAM fit parameters compatible with ChPT !! Complete Meson-meson Scattering in Unitarized Chiral Perturbation Theory

OUTLOOK INTRODUCTION: Unitarization of ChPT amplitudes: generation of resonances Complete one-loop meson-meson scattering Poles in the amplitudes with the complete calculation. Multiplets. Simultaneous description of low energy and resonances Fully renormalized and with parameters compatible with ChPT.

Coupled channel IAM : A. Gomez Nicola and J.R.P. PRL80(1998)3452, PRD59,(1999)  and f 0  a0a0 K*  (octet)  With the full one-loop SU(3) unitarized ChPT, we GENERATE, the following resonances, not present in the ChPT Lagrangian, as poles in the second Rieamann sheet J.R.Pelaez, hep-ph/ AIP Conf.Proc.660: ,2003 Brief review: Mod.Phys.Lett.A19: ,2004

a0a0    f0f0 Re  s  M (MeV)-Im  s  /2 (MeV) 754       Resonance POLE POSITIONS... Complete IAM Complete IAM cusp? K* 889   4 Light scalar nonet

OUTLOOK INTRODUCTION Unitarization of ChPT amplitudes: Complete one-loop meson meson scattering Nature of resonances: Link with QCD through the large N c limit Poles in the amplitudes with the complete calculation. Multiplets. Scalar poles found with complete and fully renormalized UNITARIZED amplitudes with standard ChPT parameters

Large N c Limit But the QCD L i large Nc SCALING, is known and Model Independent We do not know how to obtain the L i from QCD in a model independent way Pions, kaons and etas states: The qqbar meson masses M=O(1) and their decay constants f=O(  N c )

M N /M 3 N/3N/3 NcNc N/3N/3 NcNc VECTOR MESONS qqbar states: The  (770) The K*(892) M N /M 3 N/3N/3

Subtlety: The large N c does not see the scale of L i (  ) but is expected to correspond to  MeV Since now we use the completely renormalized expresions of ChPT we can choose any  for the large N c scaling and we get the uncertainty NcNc Resonance poles in the Large N Limit

The IAM generates the expected large N c behavior of established qq states What about the  and the  ? NcNc M N /M 3 N/3N/3 The  (  =770MeV) The  (  =500MeV) NcNc M N /M 3 N/3N/3

Large dependence on  choice for the large Nc scaling The  and the  pole movement is NOT like that of qq states Resonance poles in the Large N Limit

Another way of seeing it is with the modulus of the amplitude Resonance poles in the Large N Limit N c =3 N c =5 N c =10

What about the f 0 and the a 0 ? Following the pole large Nc behavior is complicated by the nearby thresholds, at least for relatively low Nc. In addition, the a 0 (980) amplitude on the real axis is more robust than the pole position For sufficienly high Nc they also disappear in the continuum like the  and  N c =3 N c =5 N c =10 N c =25  =770MeV

What are they? Resonance poles in the Large N Limit Possibility: Some “four quark” or “two meson” states are predicted to become the Meson- meson continuum in the large N c (R. Jaffe) The main component of the  and the , does not behave as qqbar state in the large Nc limit. qqbar resonance Im t  O(1) at peak cannot be present for  and  4 quark state or glueball Im t  O(1/N c 2 ) qqbar resonance t channel contributes to Re t  O(1/Nc) but Im t = 0 For the  and f 0 glueball interpretation also possible. Likely some mixing. Not for  or a 0 four quark=two meson =glueball ( if I=0 J=0 ) in this counting

The imaginary part of amplitudes vanish consistently with Imt~1/N c 2 in one corner of  space, the a 0 (980) still behaves as qqbar  =0.55 to 1 GeV a 0 (980): for almost all   =0.5 to 1 GeV f 0 (980): for all   =0.50 to 0.55 GeV

Complete one loop ChPT meson-meson scattering With unitarized meson-meson scattering amplitudes: Good fit with errors, simultaneously of resonances and low-energy Fit parameters compatible with previous ChPT values Unitarized meson-meson scattering results robust. , K *, , f 0 and a 0 poles appear simultaneously allowing for low energy description Suggests nonet interpretation for light scalars Pole positions of resonances robust. (Except a 0. but cusp disfavored) Vector meson large N c behavior is OK with qqbar nature , f 0 and a 0 large N c QCD behavior at odds with dominant qqbar nature Summary

Warning for practitioners... We use the large Nc behavior, but it is only relevant not far from reality  N c =3 Only qqbars survive at Nc= ... For sufficiently large Nc, even the tiniest admixture of qqbar could be made dominant. The mathematics could be correct, but gives no information about the DOMINANT component of physical states at N c =3. Corner of parameter space  =1000 MeV  ( H. Zheng et al. hep-ph/ hep-ph/ hep-ph/ )