TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,

Slides:



Advertisements
Similar presentations
Status of TRI P Rotary Visit to KVI 30 januari 2004 Klaus Jungmann.
Advertisements

Lyon 2005 DIPAC Lyon th DIPAC Lyon June 2005Ulrich Raich CERN AB/BDI Instrumentation in small, low energy machines Ulrich Raich CERN AB-BDI.
What is the ISOLDE cooler RFQ CB - ISCOOL H. Frånberg.
TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann.
TRI  P presentatie voor RUG College van Bestuur 17 februari 2003 Klaus Jungmann.
TRI  P presentatie voor KVI medewerkers 14 februari 2002 Klaus Jungmann Ad van den Berg Sytze Brandenburg.
December 10, 2008 TJRParticle Refrigerator1 The Particle Refrigerator Tom Roberts Muons, Inc. A promising approach to using frictional cooling for reducing.
ISOLDE WS 2007 Results with ISCOOL a new Radio Frequency Quadrupole Cooler and Buncher at ISOLDE P. Delahaye, H. Frånberg, AB-OP-PSB, ISCOOL, COLLAPS,
outline introduction experimental setup & status
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
Operational aspects 2008 run ISCOOL Isolde workshop Nov 2008 Erwin Siesling.
DESIR Progress Report DESIR hall details defined for civil construction: - compressed air, liquid nitrogen, cooling water, etc detailed layout of RFQ-HRS.
Mass Spectroscopy Mass Spectrometry ä Most useful tool for molecular structure determination if you can get it into gas phase ä Molecular weight of.
PSSC Space Instrument Laboratory Plasma instrument calibration system provides an ion beam of energy range up to 130keV/charge in a clean room To develop.
Mass Analyzers Double Focusing Magnetic Sector Quadrupole Mass Filter Quadrupole Ion Trap Linear Time-of-Flight (TOF) Reflectron TOF Fourier Transform.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
On-line tests RFQ cooler ISCOOL A quick summary P. Delahaye, H. Frånberg, I. Podadera ISCOOL, COLLAPS, ISOLDE collaboration.
Radioactive Ion Beam (RIB) Production at ISOLDE by the Laser Ion Source and Trap (LIST) Sven Richter for the LIST-, RILIS- and ISOLDE IS456 Collaborations.
F.M.H. Cheung School of Physics, University of Sydney, NSW 2006, Australia.
Simulation and Off-line Testing of a Square-wave- driven RFQ Cooler and Buncher for TITAN Mathew Smith: UBC/TRIUMF ISAC Seminar 2005.
Proposed injection of polarized He3+ ions into EBIS trap with slanted electrostatic mirror* A.Pikin, A. Zelenski, A. Kponou, J. Alessi, E. Beebe, K. Prelec,
Carbon Injector for FFAG
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Status of TRI  P Programme Advisory Committee To KVI 20 November 2003 Klaus Jungmann.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Collinear laser spectroscopy of 42g,mSc
Tools for Nuclear & Particle Physics Experimental Background.
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.
LBNL 88'' cyclotron operations Status of the 88-Inch Cyclotron High-Voltage upgrade project December 14, 2009 Ken Yoshiki Franzen.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
Ion Preparation in TITAN’s RFQ
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
A mass-purification method for REX beams
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Secondary Ion Mass Spectrometry A look at SIMS and Surface Analysis.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Progress of Bunched Beam Electron Cooling Demo L.J.Mao (IMP), H.Zhang (Jlab) On behalf of colleagues from Jlab, BINP and IMP.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
One way to improve first class mass ISOLTRAP
Acknowledgements Slides and animations were made by Dr. Jon Karty Mass Spectrometry Facility Indiana University, Bloomington.
Development of beam tracking detector using MicroChannel Plate(MCP)
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
JYFL ION COOLER AND BUNCHER.
Physics design on Injector-1 RFQ
PANDA Collaboration Meeting
Mass Spectroscopy. Mass Spectroscopy Mass Spectrometry Most useful tool for molecular structure determination if you can get it into gas phase Molecular.
Precision Measurements of Very-Short Lived Nuclei
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
November 7, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Summary & Concluding remarks
Physics Design on Injector I
A LINEAR RFQ TRAP FOR COOLING AND BUNCHING OF RADIOACTIVE ION BEAMS
Pulsed electron beam cooling experiments: data & preliminary results
Improvement of a dc-to-pulse conversion efficiency of FRAC
Presentation transcript:

TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg, U. Dammalapati, S. De, S. Dean, P.G. Dendooven, O. Dermois, G. Ebberink, M.N. Harakeh, R. Hoekstra, L. Huisman, K. Jungmann, H. Kiewiet, R. Morgenstern, J. Mulder, G. Onderwater, A. Rogachevskiy, M. Sohani, M. Stokroos, R. Timmermans, E. Traykov, L. Willmann and H.W. Wilschut Uppsala, Sweden, 2-6 May 2005 Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

TRI  P project and facility Ion Catcher RFQ Cooler MOT Beyond the Standard Model TeV Physics Nuclear Physics Atomic Physics Particle Physics Production Target Magnetic Separator MeV meV keV eV neV AGOR cyclotron AGOR cyclotronIon catcher (thermal ioniser or gas-cell) Low energy beam line RFQ cooler/buncher MOT D D D D Q Q Q Q Q Q Q Q Magnetic separator Production target Wedge Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Our RFQ cooler/buncher concept Buffer gas pressure (He): ~10 -1 mbar RFQ ion coolerRFQ ion buncher 10eVthermal Trap position U+Vcos  t -(U+Vcos  t) 2 x 330 mm Switching on end electrodes RF capacitive coupling DC drag resistor chain Electronics designed for large range of isotopes UHV compatible design and materials Standard vacuum parts (NW160) ~10 -3 mbar Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

RFQ cooler prototype tests RFQ in vacuum Transverse cooling Velocity damping With and without a drag voltage on the segments Tests: Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

RFQ cooler/buncher design Pressure cooler: ~10 -1 mbar ~10 -3 mbar He buffer gas Separate connections for trap segments Changeable separation electrodes with different aperture diameters Buffer gas: Helium for light ions (i.e. Na-21) (Heavier gas may be considered for Ra ions) Kapton foil 12.5  m 120 pF Stainless steel rods OFHC copper Preset frequencies: 0.5MHz, 1 MHz, 1.5 MHz RF amplitude: 150 V (peak-to-peak) UHV compatible resistors for drag voltage : Uncoated, 2.2 k  Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Simulations and calculation of E field Simulations Real 3D geometry Material properties Geometry separated to smaller parts Fine mesh and grid size 3D electric field map (RF and DC) RF electric potentialDC drag potential FEMLAB calculation examples: F (x,y,z,t) = m * (dV (x,y,z,t) /dt) F (x,y,z,t) = E (x,y,z,t) * q dV (x,y,z,t) =(E (x,y,z,t) * q/m) * dt dr (x,y,z,t) =dV (x,y,z,t) * dt Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Program input: Ion charge Ion mass KE Phase space distribution Electric field map (RF and DC) f RF RF amplitude Drag voltage step Gas pressure Standard ion mobility Number of ions Time step Program output: Single ion tracing Phase space distribution Confinement Transmission through exit aperture Ion tracing and distributions Mathieu equation: aUaU qVqV q max = RF only (U=0) Ion tracing in RFQ guide Buffer gas cooling + DC drag Phase space distributions Ion trapping and extraction Confinement and transmission Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Optimization using the simulations Main goal: collect all ions Confinement and transmission Optimize parameters (regions of stable operation): pressure and type of gas aperture diameters beam settings at entrance drag voltage step potentials on separation electrodes accumulation time (buncher) trap potential depth and shape Questions: phase dependence (cooler-buncher) phase dependence (switching) where do we loose ions (why?) ~ 2 eV q=0.5 p=0.025 mbar drag voltage=0.5V Buffer gas pressure RF: 1500 kHz, 21 Na +, 10 eV 950 m/s maximum transverse velocity 0.5 V drag voltage step Gas pressure  drag voltage Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Drag voltage and pressure dependence Drag voltage step 21 Na +, 10 eV Pressure: 0.01 mbar RF: 1500 kHz 950 m/s maximum transverse velocity  2 mm aperture 0.01 mbar – too low, exit energy high Drag voltage step 21 Na +, 10 eV Pressure: mbar RF: 1500 kHz 950 m/s maximum transverse velocity  2 mm aperture mbar low pressure limit Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Frequency and focus dependence Frequency 21 Na +, 10 eV 0.1 mbar buffer gas pressure 950 m/s maximum transverse velocity 0.5 V drag voltage step  2 mm aperture Higher frequency is preferred Maximum transverse velocity 21 Na +, 10 eV 1500 kHz radio frequency 950 m/s maximum transverse velocity 0.5 V drag voltage step  2 mm aperture Beam properties at entrance: just focus Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Cool and select Mass selectivity for 23 Na + / 21 Na + Scan line: U/V = const=0.17 m>M M m<M mass resolution  frequency q a RF and DC operation: Mass filter Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

LEBL and optimization of parameters (work in progress) LEBL parts: Extraction tube Einzel lenses Electrostatic steerers Quadrupole deflectors Low energy beam line RFQ cooler/buncher MOT EL QD ET Ion catcher Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics

Magneto-Optical Traps for 21 Na decay studies (work in progress) Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics Collector MOT - Designed for optimal collection - Large laser beam diameter Decay MOT - 4  recoil collection - Multi-detector setup for  -detection  - detectors ports Equipotential rings MCP for recoils Lasers not shown! Atom cloud position

Conclusion TRI  P on track and facility ready for users RFQ cooler and buncher system ready All parts to be tested together soon Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics