1 First Results from CLEO-c Thomas Coan CLEO-c Physics Program D +  +  Decays Absolute Br(D  hadrons) e + e -   (DD) Southern Methodist University.

Slides:



Advertisements
Similar presentations
Electroweak and Radiative Penguin Transitions from B Factories Paoti Chang National Taiwan University 2 nd KIAS-NCTS Joint Workshop on Particle Physics,
Advertisements

Bo XinRare D Semileptonic Decays 14/23/2006 Studies of Rare Semileptonic D Meson Decays  Introduction  Analysis Technique  Testing the procedure  Results.
Determination of and related results from B A B AR Masahiro Morii, Harvard University on behalf of the B A B AR Collaboration |V cb | MESON 2004, Krakow,
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Current Methods of determining V ub I. Endpoint of the inclusive lepton spectrum II. Exclusive decays Methods of determining V ub with small theoretical.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
Oct.,  Overview of the CLEO experiment  D and D S leptonic decays to  and  : Measurements of absolute branching fractions Measurements of absolute.
Marina Artuso 1 Beyond the Standard Model: the clue from charm Marina Artuso, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K-
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Heavy Flavor Production at the Tevatron Jennifer Pursley The Johns Hopkins University on behalf of the CDF and D0 Collaborations Beauty University.
FIRST RESULTS from the CLEO-c DETECTOR The CLEO-c Physics Program The CLEO-c Detector The CLEO-c Run Plan Preliminary Results on the  (3770) Preliminary.
Charm results from CLEOIII, CLEO-c Steven Dytman Univ. of Pittsburgh OUTLINE: 1.Introduction to CLEO 2.D 3-body decays 3.Semileptonic D decay K-K- --
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
XLIId RENCONTRES DE MORIOND ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES CLEO-c Results Basit Athar March , 2007 University of Florida CLEO Collaboration.
1 Charm Decays at Threshold Sheldon Stone, Syracuse University.
D-meson results from CLEO “Rumors of my death are exaggerated”. –2003: CLEO re-incarnated (phoenix-like) into 3-4 GeV electron- positron collider. –First.
1 Absolute Hadronic D 0 and D + Branching Fractions at CLEO-c Werner Sun, Cornell University for the CLEO-c Collaboration CKM 2005 Workshop on the Unitarity.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
First Observation of B°  D*°         Decays Sheldon Stone Jianchun Wang Syracuse University CLEO Plenary 05/11/01.
Alex Smith – University of Minnesota Determination of |V cb | Using Moments of Inclusive B Decay Spectra BEACH04 Conference June 28-July 3, 2004 Chicago,
Prelude for practice talk:  I have outdated numbers for the D Hadronic BR analysis  I have the papers and a week so will fix soon.  Tables grabbed from.
Jochen Dingfelder, SLAC Semileptonic Decay Studies with B A B AR Annual DOE HEP Program Review, June 5-8, 2006, SLAC B D   X c,X u.
Study of the semileptonic decays at 4170 MeV Koloina Randrianarivony Marina Artuso (Syracuse University)
7/4/08 Flavour physics at CLEO-c - Jim Libby 1 Jim Libby (University of Oxford) On behalf of the CLEO-c collaboration  Introduction to CLEO-c  Measurements.
X. C. Lou, Snowmass Charm Physics Potentials at B-factories XinChou Lou, University of Texas at Dallas Introduction Physics Topics: branching fractions,
Bo XinD  K/π e + and Vcs and Vcd at CLEO-c 12/20/2008 Study of and measurement of V cs and V cd at CLEO-c Study of D  K/πe + and measurement of V cs.
CLEO-c Status & Prospects CLEO-c Status & Prospects David Asner University of Pittsburgh  D o D o, D o  K -  + K-K- K+K+ ++  Beauty ’03 – 9th.
1 CLEO-c Measurements of Purely Leptonic Decays of Charmed Mesons & other Wonders Sheldon Stone, Syracuse University.
1 Doris Y. Kim, University of Illinois Urbana-Champaign Content Part I: Theories of Charm Semileptonic decays Part II: q 2 dependence in Pseudo- scalar.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
Measurement of the Branching fraction B( B  D* l ) C. Borean, G. Della Ricca G. De Nardo, D. Monorchio M. Rotondo Riunione Gruppo I – Napoli 19 Dicembre.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
Luca Lista L.Lista INFN Sezione di Napoli Rare and Hadronic B decays in B A B AR.
B S Mixing at Tevatron Donatella Lucchesi University and INFN of Padova On behalf of the CDF&D0 Collaborations First Workshop on Theory, Phenomenology.
Studies of D Semileptonic Decay at CLEO-c Bo Xin Ph.D. Thesis Defense 1 Studies of D Semileptonic Decays at CLEO-c Bo Xin Ph.D. Thesis Defense West Lafayette,
1 CLEO-c CESR-c M. Selen, Aspen/02 CLEO-c & CESR-c: Probing Physics Behind & Beyond the Standard Model CLEO-c & CESR-c: Probing Physics Behind & Beyond.
D 0 D 0 bar Mixing and CP Violation at BESIII Kanglin He June 2006, Beijing.
Recent Charm from CLEO Yongsheng Gao Southern Methodist University (CLEO Collaboration) HEP2003 Europhysics Conference Aachen, Germany July 17 ─ 23, 2003.
 Candidate events are selected by reconstructing a D, called a tag, in several hadronic modes  Then we reconstruct the semileptonic decay in the system.
Rare B  baryon decays Jana Thayer University of Rochester CLEO Collaboration EPS 2003 July 19, 2003 Motivation Baryon production in B decays Semileptonic.
Haibo Li, IHEP, BES collaboration1 Charm Physics Results at BES and Prospects at BESIII Haibo Li On behalf of BES Collaboration Institute of High.
25/9/2007 LHCb UK meeting 1 ADS determination of γ with B→(Kπ) D K, B→(hh) D K and B→(K3π) D K Jim Libby (University of Oxford)
The BEPCII Project Hesheng Chen Institute of High Energy Physics Chinese Academy of Sciences Outline 1.BEPC/BES and physics results 2.BEPCII 3.BESIII 4.Budget.
Round table Physics at Super-  -c factory 1 Super-  -c factory, BINP, Sep 2008 Some starting points for discussion Super-  -c factory.
 (3770) and D physics at BESII Ma HaiLong [For BES Collaboration] CCAST & IHEP 中国物理学会 2006 年秋季会议(北京)
Physical Program of Tau-charm Factory V.P.Druzhinin, Budker INP, Novosibirsk.
1 BESIII/CLEO-c Workshop 1/13/03 Ian Shipsey CLEO-c & CESR-c: A New Frontier in Weak and Strong Interactions Ian Shipsey, co-spokesperson CLEO Collaboration.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
Semileptonic Decays from Belle Youngjoon Kwon Yonsei Univ. / Belle.
Semileptonic D Decays from CLEO and BELLE Yongsheng Gao Southern Methodist University (CLEO Collaboration) ICHEP04, Beijing, Aug. 16 ─ 23, 2004.
D 0  K/  l Analysis Laurenz Widhalm 北京, June 5 th Form Factors and Absolute BRs for D 0   / K KEK 高エネルギ Belle in a nutshell e-e- 8GeV e+e+ 3.5GeV.
1 Absolute Hadronic D 0 and D + Branching Fractions at CLEO-c Werner Sun, Cornell University for the CLEO-c Collaboration Particles and Nuclei International.
Extract the partial rates We can make fits to the partial decay rates to extract (1) normalization f + (0)|V cx | (2) Form factor shape parameters r 1.
Marina Artuso WG1 CKM Status and future perspectives on V cs and V cd Marina Artuso Syracuse University.
Charm Form Factors from from B -Factories A. Oyanguren BaBar Collaboration (IFIC –U. Valencia)
Steven Blusk, Syracuse UniversityRecontres de Moriond, March Measurements of Hadronic, Semileptonic and Leptonic Decays of D Mesons at E cm =3.77.
CLEO-c Workshop 1 Data Assumptions Tagging Rare decays D mixing CP violation Off The Wall Beyond SM Physics at a CLEO Charm Factory (some food for thought)
Mats Selen, HEP Measuring Strong Phases, Charm Mixing, and DCSD at CLEO-c Mats Selen, University of Illinois HEP 2005, July 22, Lisboa, Portugal.
D leptonic decay and semi- leptonic decays from BESIII Yangheng Zheng University of Chinese Academy of Sciences (on behalf of BESIII collaboration) July.
Present status of Charm Measurements
(BABAR Collaboration) LAL – Orsay (Marie Curie EIF)
Semileptonic and Leptonic D0, D+, and Ds+ Decays at CLEO-c Werner Sun, Cornell University for the CLEO Collaboration XLIVth Rencontres de Moriond, QCD.
new measurements of sin(2β) & cos(2β) at BaBar
Precision Leptonic, Semileptonic and Hadronic Decays of the D
BESIII 粲介子的强子衰变 周晓康 中国科学技术大学 BESIII 粲介(重)子物理研讨会.
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Recent (Charm) Electroweak Results from CLEO
Presentation transcript:

1 First Results from CLEO-c Thomas Coan CLEO-c Physics Program D +  +  Decays Absolute Br(D  hadrons) e + e -   (DD) Southern Methodist University CLEO Collaboration Summary

2 CLEO-c Physics Focus Heavy Flavor Physics: “overcome QCD roadblock” Leptonic decays  decay constants Semileptonic decays  Vcd, Vcs, V_CKM unitarity check, form factors Absolute D Br’s normalize B physics Test QCD techniques in c sector, apply to b sector  improved Vub, Vcb, Vtd, Vts Physics beyond SM: where is it? CLEO-c: D-mixing, charm CPV, charm/tau rare decays. CLEO-c: precision charm absolute Br measurements CLEO-c: precise measurements of quarkonia spectroscopy & decay provide essential data to calibrate theory. Physics beyond SM will have nonperturbative sectors

3 Why Charm Threshold? Large production , low decay multiplicity Pure initial state (DD): “no” fragmentation Double tag events: “no” background Clean neutrino reconstruction Quantum coherence: aids D-D mixing and CPV studies

4 CLEO-c Run Plan 2004:  (3770) – 3 fb -1 18M DD events, w/ 3.6M tagged D decays (150 times MARK III) 2005:  s  4100 MeV – 3 fb M D s D s events, w/ 0.3M tagged D s decays (480 times MARK III, 130 times BES) 2006:  (3100) – 1 fb -1 1 Billion J/  decays (170 times MARK III, 15 times BES II)

5 Tagging Technology Pure DD/D s D s production:  (3770)  DD  s ~4140  D s D s Large branching fractions (~1-15%) High reconstruction efficiency  High net tagging efficiency ~20% M(D) MC

6 Absolute Br’s w/ Double Tags ~ Zero bkgnd in hadronic modes Mode  s (GeV)PDG2k CLEOc (  B/B %) (  B/B %) D 0  K -  D +  K -  +  D s  MC M(D) (GeV/c 2 ) D 0  K    D   K      w/ 3 fb  1 w/ D 0  tag w/ D   tag

7 f Dq from Leptonic Decays  ( D q  l )   f_Dq  2  V_cq  2 w/ 3 fb-1 & 3-gen CKM unitarity: CLEO-c  f/f PDG  f/f ReactionDecay Constant f Ds Ds+  Ds+   12%1.9% f D D+  D+   ~50%2.3% f Ds Ds+  Ds+   33%1.6% Ds+  Ds+   D+  D+   KLKL  |f D | 2 l |V CKM | 2 MC

8 Semileptonic Decays |V CKM | 2 |f(q 2 )| 2 =  =  V_cq  2 Br ( D  P l ) /  D  V_cq  2  f(q 2 )  2 d  ( D  P l ) / dq 2 MC D 0   l  Kl U=E_miss  P_miss 1 fb-1 q 2 (GeV 2 ) Measure  f(q 2 )  2 D 0   l D    l D 0  K l Ds   l Mode PDG04 (  B/B%)CLEOc (  B/B%)   V cd /V cd &  V cs /V cs  1.6%  V cd /V cd = 5.4% (PDG04)  V cs /V cs = 9.3% (PDG04)

9 Probing QCD Gluons carry color charge  binding: Glueballs =  gg  and Hybrids =  qqg  X  c c ¯ Radiative  decays: ideal glue factory CLEO-c:  10  J/  decays   60M J/    X Partial Wave Analysis Absolute Br’s: , KK, pp, ,... E.g.: f J (2220)      MC      CLEO-c: find/debunk f J (2220)

10 CLEO-c Detector B=1.0 T 93% of 4   E /E = = 85% of 4  p>1 GeV 83% of 4   % Kaon ID with 0.2%  Data Acquisition: Event size = 25kB Thruput  6MB/s Trigger : Tracks & Showers Pipelined Latency = 2.5  s 93% of 4   p /p = dE/dx: 5.7%

11 Leptonic Decays: D +   +  Br(D q  l ) = m 2l2l 2 m_D q ( 1 - ) f_D q |V cq |  _D q 2 2 2l2l 88 GFGF 2 m_D q m Strong Physics Weak Physics f D+ provides “iron post of observation” for Lattice QCD “Calibrated” Lattice QCD (f B /f D ) + f D  f B f D+ useful for checking potential models Seek to measure f D+ f B + B-mixing m’ments  |V td /V ts | precision

12 Single D  Tag   L dt = 57 pb   s =   D tag side: D   K +    , K +      , K s  , K s      , K s       /K  ID: dE/dx + RICH  0 recon:  shower shape/location in CsI K s recon:   kinematic fit to displaced vertex  Key analysis variables:  MM 2 = (E beam  E  ) 2  (  p D  p  ) 2    M D = E beam  (  p i )  Signal side: 1 track from event vertex, min_I in CsI “small” (< 250 MeV) neutral  E in CsI no reconstructed K s e + e    (3770)  D+DD+D D-Tag side  Signal side

13 K+K+ KsKs K +      0 Ks+Ks+ KsKs Data M D Distribution v. D Tag S:  286 B: 8765  784

14 MM 2 Distribution v. D Tag MC  (MM 2 )  GeV 2

15 Leptonic Decays: Signal Region  Data K s    +  + Tag  8 evts    GeV 2    GeV 2 D   K s   Check MC  (MM 2 ) w/ data: D +  K 0  +  Scale MC  (MM 2 ) w/ data:  = (0.024/0.021)  = GeV 2

16 Background + Results Br(D +   +  =  N tag N sig Br(D +   +  = (3.5  1.4  0.6) x 10  4 f D+ = (201  41  17) MeV  D  Background: Mode# of Events D +   +   D +  K   + D +   + D +        0.08 negligible  D 0 D 0 Background: 0.16  0.16 events Background estimates via MC  e + e   continuum: 0.17  0.17 events  O’all Bkg: 1.07  0.25 events  1.07  1.07 events Preliminary &  = 69.9% for D +  + recon.

17 Br(D) &  (DD)  s =  (3770)   KK ++ ee e+e+ X D0D0 D0D0   KK ++ ee e+e+ D0D0 D0D0 K+K+  Single TagDouble Tag S = 2N DD B  1 D = N DD B 2  2 w/  2   1 : 2 N DD = S2S2 4D S2S2 4DL   (DD) = i.e., B &  independent B = 2D S 11 22

18 Single and Double Tags D 0  K   +, K   +  0, K   +    + + c.c. D +  K   +  +, K s  + + c.c.  Determine 5 Br’s and  (e + e   D 0 D 0 ) &  (e + e   D + D  )  10 Single Tag + 13 Double Tag modes  Event selection similar to f D+ analysis  Key analysis variables:   E = E beam   E i   M BC =  (E beam  (  p i ) 2 ) 2

19 Single and Double Tag Yields N(single tags) from ML fit to M_BC Line shape parameters from MC MC D 0  K   + Data D 0  K   + D and D fit together: same signal param’s, indep. bkg. Data N(double tags) from 2-D ML fit to 2-D M_BC K +    0 v. K   +  0

20 Fit Results for Br(D) and  (DD) Fit Input: S.T. & D.T. yields,  _tag,  _bkg + errors  2 /ndof = 9.0/16, C.L. = 91.4%  2 fit to account for correlations btwn single/double tags, bkg Fit Output: Br(D 0  K   + ), Br(D 0  K   +  0 ), Br(D 0  K   +    + ) Br(D +  K   +  + ), Br(D +  K s  +) and N(D 0 D 0 ), N(D + D  ) Br(D0  K  +) =  ?  ? Br(D0  K  +  0) =  ?  ? Br(D0  K  +  +) =  ?  ? Br(D+  K  +  +) =  ?  ? PDG04 CLEO-c Preliminary N(D0D0) = 1.98 x10 5   (D0D0) = 3.47  0.07  0.15 nb N(D+D  ) = 1.48 x10 5   (D+D  ) = 2.50  0.11  0.11 nb Br(D+  Ks  +) =  ?  ?  (DD) = 6.06  0.13  0.22 nb Need pdg comp

21 Summary I need nicer plots for Br(D  hadrons)

22 Backup

T  1.0T 93% of 4   p /p = dE/dx: 5.7% 93% of 4   E /E = = 83% of 4   % Kaon ID with 0.2%  85% of 4  p>1 GeV Trigger : Tracks & Showers Pipelined Latency = 2.5  s Data Acquisition: Event size = 25kB Thruput  6MB/s CLEO III Detector  CLEO-c Detector

24 J/    X Inclusive  - Spectrum MC Inclusive  -spectrum Search for monochromatic  E.g., 24% efficient for f J (2220)  10  sensitivity for narrow resonances Modern 4  detector Suppress hadronic bkgnd: J/   X Huge data set Plus  and  (1S) data Determine J PC and gluonic content