Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/2009 1 Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Quark Matter 2006 November 13-20, Shanghai, China Nuclear Chemistry Group SUNY Stony Brook, USA PHENIX Studies.
LP. Csernai, Sept. 4, 2001, Palaiseau FR 1 L.P. Csernai, C. Anderlik, V. Magas, D. Strottman.
STAR 1 Azimuthal Anisotropy: The Higher Harmonics Art Poskanzer for the Collaboration STAR.
Quantum Opacity, RHIC HBT Puzzle, and the Chiral Phase Transition RHIC Physics, HBT and RHIC HBT Puzzle Quantum mech. treatment of optical potential, U.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Hydrodynamic Approaches to Relativistic Heavy Ion Collisions Tetsufumi Hirano RIKEN BNL Research Center.
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
Recent Results from STAR Rene Bellwied, Wayne State, for the STAR Collaboration  Thermalization & Timescales  High pt physics  Fluctuations  130 to.
Collision system dependence of 3-D Gaussian source size measured by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory 23 rd Winter Workshop.
WPCF07, Sonoma, California, August Observation of Extended Pion Sources in Relativistic Heavy Ion Collisions: extraction of source breakup time.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Collective Flow in Heavy-Ion Collisions Kirill Filimonov (LBNL)
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
HBT Dan Magestro, The Ohio State University Overview of HBT interferometry Overview of HBT interferometry The SPS & RHIC HBT program The SPS & RHIC HBT.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
Anisotropic flow, Azimuthal Balance Function, and Two-charged-particle Azimuthal Correlations in RQMD and AMPT We are very grateful to Zhixu Liu and Jiaxin.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Sergey Panitkin Current Status of the RHIC HBT Puzzle Sergey Panitkin Brookhaven National Lab La Thuile, March 18, 2005.
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
Peter Kolb, November 18, 2003Momentum Anisotropies1 Momentum Anisotropies -- Probing the detailed Dynamics Department of Physics and Astronomy State University.
Peter Kolb, CIPANP03, May 22, 2003what we learn from hydro1 What did we learn, and what will we learn from Hydro CIPANP 2003 New York City, May 22, 2003.
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Systematic Study of Elliptic Flow at RHIC Maya SHIMOMURA University of Tsukuba ATHIC 2008 University of Tsukuba, Japan October 13-15, 2008.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
1 Space-time analysis of reactions at RHIC Fabrice Retière Lawrence Berkeley Lab STAR collaboration.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Analysis of the anomalous tail of pion production in Au+Au collisions as measured by the PHENIX experiment at RHIC M. Nagy 1, M. Csanád 1, T. Csörgő 2.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
What do the scaling characteristics of elliptic flow reveal about the properties of the matter at RHIC ? Michael Issah Stony Brook University for the PHENIX.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
A. Ster1,2, T. Csörgő2 1 KFKI-RMKI, 2 KFKI-MFA, Hungary
Hydro + Cascade Model at RHIC
Presentation transcript:

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT András Ster 1,, M.Csanád 2, T.Csörgő 1, B. Tomasik 3 MTA KFKI RMKI, Budapest, Hungary 1 MTA KFKI RMKI, Budapest, Hungary, ELTE University, Budapest, Hungary 2 ELTE University, Budapest, Hungary, Univ. Mat. Bela, Banska Bystrica, Slovakia 3 Univ. Mat. Bela, Banska Bystrica, Slovakia Buda-Lund hydro model Buda-Lund hydro model Observables Observables Review of old central hydro results Review of old central hydro results New non-central hydro results New non-central hydro results Conclusion Conclusion

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund hydro model General form of a particle emission function General form of a particle emission function With (Boltzmann) probability distribution for fluids With (Boltzmann) probability distribution for fluids

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund hydro model hypersurface hypersurface flow field flow field chemical potential chemical potential temperature temperature must comply with the 5 differential equations of fluid dynamics: must comply with the 5 differential equations of fluid dynamics: - continuity - continuity - momentum conservation - momentum conservation - energy conservation - energy conservation

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund hydro model Equations of non-relativistic inviscid fluid dynamics Equations of non-relativistic inviscid fluid dynamics Not closed, EoS needed, for example Not closed, EoS needed, for example

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund hydro model 3D expansion with axial or ellipsoidal symmetry 3D expansion with axial or ellipsoidal symmetry Local thermal equilibrium Local thermal equilibrium Analytic expressions for the observables Analytic expressions for the observables Reproduction known exact hydro solutions (nonrelativistic, hubble and bjorken limits) Reproduction known exact hydro solutions (nonrelativistic, hubble and bjorken limits) Core-halo picture (long lived resonances) Core-halo picture (long lived resonances) M. Csanád, T.Csörgő, B. Lörstad: Nucl.Phys.A742:80-94,2004; nucl-th/ model principles 5 model principles

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund Hydro Model Buda-Lund form of hydro fields: in several cases parametric solutions of hydrodynamics see M. Csanád’s talk

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund Hydro Model (2) Where (in case of axial symmetry): Where (in case of axial symmetry): = H t r t H t :transverse Hubble constant

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ The Buda-Lund hydro model (3) Observables Observables

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Buda-Lund Hydro: Observables Final form of the Invariant Momentum Distribution: Final form of the Invariant Momentum Distribution:

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Buda-Lund Hydro Model: HBT radii Final form of the HBT radii: Final form of the HBT radii:

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ N. M. Agababyan et al, EHS/NA22, PLB 422 (1998) 395 T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80 Buda-Lund fits to NA22 h+p

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Emission function from NA22 h+p

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to SPS Pb+Pb A. Ster, T.Csörgő, B. Lörstad, Nucl.Phys. A661 (1999) , nucl-th/ NA49NA44

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Emission function from SPS Pb+Pb

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ A. Ster, et al., Acta Phys.Polon. B35 (2004) , nucl-th/ BudaLund fits to RHIC Au+Au

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Emission function from RHIC Au+Au

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ M. Csanád, et al., J.Phys.G30: S1079-S1082, 2004, nucl-th/ BudaLund fits to RHIC Au+Au

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Emission function from RHIC Au+Au

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Buda-Lund fit results

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to RHIC preliminary p+p T. Csörgő, et al., Heavy Ion Physics, hep-ph/

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Emission function from RHIC p+p

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fit results

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to NA49 data (preliminary HBT, work in progress)

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to NA49 data (preliminary HBT, work in progress)

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fit results of NA49 data

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ source parameter excitation functions

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Models with acceptable results: nucl-th/ Buda-Lund / core-halo model. T.Csörgő. A. Ster, Heavy Ion Phys. 17 (2003) nucl-th/ Multiphase Trasport model (AMPT). Z. Lin, C. M. Ko, S. Pal. nucl-ex/ Blast wave model. F. Retiére for STAR. nucl-th/ Hadron cascade model. T. Humanic. nucl-th/ D hydro model. T. Hirano, & T.Tsuda. hep-ph/ Hadron model. W.Broniowski, A. Baran W. Florkowski. Other interesting models: Some other hydro models

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Femptoscopy of QGP BudaLund fits indicate: scaling of HBT radii BudaLund prediction (1995): each R 2 ~ 1 / m t

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund model describes single particle distributions, rapidity distributions, HBT correlation function radii w/o puzzle in the following reactions: BudaLund model describes single particle distributions, rapidity distributions, HBT correlation function radii w/o puzzle in the following reactions: Rings of fire in and Rings of fire in and Fireballs in and Fireballs in and T < T c in h+p and T < T c in h+p and T > T c in p+p and ; T c (=172±3MeV) T > T c in p+p and ; T c (=172±3MeV) Conclusions on central collisions Conclusions on central collisions

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ asBuda-Lund fits to non-central RHIC data Model extensions to ellipsoidal symmetry for elliptic flow: calculate 2nd harmonic coefficient of anisotropy:

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to non-central RHIC data Exact non-relativistic result for elliptic flow: I n : modified Bessel functions I n : modified Bessel functions Effective temperatures in reaction plane and in perp. For detailed calculations see: M. Csanád et al., hep-ph/ v2

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund fits to non-central RHIC data Model extensions to ellipsoidal symmetry for asHBT radii: for asHBT radii: X=R x,Y=R y We found that „a” is different in each direction

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ asBuda-Lund fits to non-central RHIC data Model extensions to ellipsoidal symmetry for azimuthally integrated spectra: Calculate the volume term for ellipsoids : replaced R 2 t by R x *R y

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ asBudaLund fits to non-central RHIC data

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ asBuda-Lund fit results of non-central RHIC data

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ BudaLund geometrical picture of non-central RHIC reactions RxRx RyRy R x > R y Schematic view 20-30% ~ b = 8-12 fm

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Universal v2 scaling predicted by BudaLund model (2003)

Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ asBuda-Lund model describes single particle distributions, elliptic flow and asHBT correlation function radii of 20-30% centrality data of 200 GeV Au+Au reactions at RHIC. asBuda-Lund model describes single particle distributions, elliptic flow and asHBT correlation function radii of 20-30% centrality data of 200 GeV Au+Au reactions at RHIC. We find that T drops to 179 MeV from ~200 MeV of central collisions. We find that T drops to 179 MeV from ~200 MeV of central collisions. The source at freeze-out was found to be slightly extended in the reaction plane ( R x > R y ), in agreement with M. Csanád’s conclusion The source at freeze-out was found to be slightly extended in the reaction plane ( R x > R y ), in agreement with M. Csanád’s conclusion Conclusion Conclusion